Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 10, Pages 62–76
DOI: https://doi.org/10.20948/mm-2020-10-05
(Mi mm4223)
 

This article is cited in 10 scientific papers (total in 10 papers)

Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme

L. I. Moroz, A. G. Maslovskaya

Amur State University
References:
Abstract: The paper is devoted to the development and program implementation of a computational algorithm for modeling a process of anomalous diffusion. The mathematical model is formulated as an initial-boundary value problem for a nonlinear fractional order partial differential equation. An implicit finite-difference scheme based on an increased accuracy order approximation for the Caputo derivative is constructed. An application program was designed to perform computer simulation of the anomalous diffusion process. The numerical analysis of the accuracy of approximate solutions is conducted using a test-problem. The results of computational experiments are presented on the example of the modeling of a fractal nonlinear dynamic reaction-diffusion system.
Keywords: anomalous diffusion equation, reaction-diffusion process, Caputo fractional derivative, implicit finite difference scheme.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-90075
Received: 01.06.2020
Revised: 01.06.2020
Accepted: 20.06.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 3, Pages 492–501
DOI: https://doi.org/10.1134/S207004822103011X
Document Type: Article
Language: Russian
Citation: L. I. Moroz, A. G. Maslovskaya, “Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme”, Mat. Model., 32:10 (2020), 62–76; Math. Models Comput. Simul., 13:3 (2021), 492–501
Citation in format AMSBIB
\Bibitem{MorMas20}
\by L.~I.~Moroz, A.~G.~Maslovskaya
\paper Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme
\jour Mat. Model.
\yr 2020
\vol 32
\issue 10
\pages 62--76
\mathnet{http://mi.mathnet.ru/mm4223}
\crossref{https://doi.org/10.20948/mm-2020-10-05}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 3
\pages 492--501
\crossref{https://doi.org/10.1134/S207004822103011X}
Linking options:
  • https://www.mathnet.ru/eng/mm4223
  • https://www.mathnet.ru/eng/mm/v32/i10/p62
  • This publication is cited in the following 10 articles:
    1. L. I. Moroz, A. G. Maslovskaya, “A fractional-differential approach to numerical simulation of electron-induced charging of ferroelectrics”, J. Appl. Industr. Math., 18:1 (2024), 137–149  mathnet  mathnet  crossref  crossref
    2. D. A. Tverdyi, R. I. Parovik, “The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the gerasimov-caputo type”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 47:2 (2024), 35–57  mathnet  mathnet  crossref
    3. L.I. Moroz, “An Algorithm for the Numerical Solutions of the Time-Space Fractional Reaction-Diffusion-Drift Equation”, Modelling and Data Analysis, 14:3 (2024), 105  crossref
    4. Y. V. Slastushenskiy, D. L. Reviznikov, S. A. Semenov, “METHODS FOR PARAMETRIC IDENTIFICATION OF FRACTIONAL DIFFERENTIAL EQUATIONS”, Differencialʹnye uravneniâ, 60:7 (2024)  crossref
    5. Yu. V. Slastushenskiy, D. L. Reviznikov, S. A. Semenov, “Methods for Parametric Identification of Fractional Differential Equations”, Diff Equat, 60:7 (2024), 941  crossref
    6. D. A. Tverdyi, R. I. Parovik, Mathematics of Planet Earth, 12, Hereditary Models of Dynamic Processes in Geospheres, 2024, 177  crossref
    7. D. A. Tverdyi, R. I. Parovik, Mathematics of Planet Earth, 12, Hereditary Models of Dynamic Processes in Geospheres, 2024, 193  crossref
    8. A. Yu. Morozov, D. L. Reviznikov, “Algorithms for the numerical solution of fractional differential equations with interval parameters”, J. Appl. Industr. Math., 17:4 (2023), 815–827  mathnet  crossref  crossref
    9. A.G. Maslovskaya, L.I. Moroz, 2022 Days on Diffraction (DD), 2022, 95  crossref
    10. Christina Kuttler, Anna G. Maslovskaya, Lubov I. Moroz, 2021 Days on Diffraction (DD), 2021, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :146
    References:58
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025