Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 12, Pages 29–32 (Mi mm3218)  

This article is cited in 9 scientific papers (total in 9 papers)

Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations

S. V. Polyakov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Full-text PDF (228 kB) Citations (9)
References:
Abstract: Object of this research are differential equations of diffusion-convection type. These equations are used for the description of many nonlinear processes in solids, liquids and gases. Despite a set of works on problems of their decision, they still present certain difficulties for the theoretical and numerical analysis. In the work the grid approach on the basis of the finite differences method for the solution of the equations of this kind is considered. For simplification of consideration the one-dimensional version of the equation was chosen. However the main properties of the equation are equal non-monotonicity and non-linearity were kept. For the solution of boundary problems for such equations the special variant of non-monotonic sweep procedure is offered.
Keywords: diffusion-convection equation, finite-difference schemes, integral transformation, algorithm of non-monotonic sweep procedure.
Received: 01.10.2012
English version:
Mathematical Models and Computer Simulations, 2013, Volume 5, Issue 4, Pages 338–340
DOI: https://doi.org/10.1134/S2070048213040121
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: S. V. Polyakov, “Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations”, Mat. Model., 24:12 (2012), 29–32; Math. Models Comput. Simul., 5:4 (2013), 338–340
Citation in format AMSBIB
\Bibitem{Pol12}
\by S.~V.~Polyakov
\paper Exponential finite-difference schemes with double integral transformation for desicion of diffusion-convection equations
\jour Mat. Model.
\yr 2012
\vol 24
\issue 12
\pages 29--32
\mathnet{http://mi.mathnet.ru/mm3218}
\transl
\jour Math. Models Comput. Simul.
\yr 2013
\vol 5
\issue 4
\pages 338--340
\crossref{https://doi.org/10.1134/S2070048213040121}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928982642}
Linking options:
  • https://www.mathnet.ru/eng/mm3218
  • https://www.mathnet.ru/eng/mm/v24/i12/p29
  • This publication is cited in the following 9 articles:
    1. T. A. Kudryashova, S. V. Polyakov, “Flow Exponential Schemes for Solving Equation of Convection-Diffusion Type”, Math Models Comput Simul, 16:S2 (2024), S225  crossref
    2. Miglena N. Koleva, Sergey V. Polyakov, Lubin G. Vulkov, Studies in Computational Intelligence, 1111, Advanced Computing in Industrial Mathematics, 2023, 112  crossref
    3. Chernyshov A.D. Sajko D.S. Goryainov V.V. Kuznetsov S.F. Nikiforova O.Yu., “The Diffusion Problem in a Rectangular Container With An Internal Source: Exact Solutions Obtained By the Fast Expansion Method”, St. Petersb. Polytech. Univ. J.-Phys. Math., 13:3 (2020), 42–53  crossref  isi
    4. Sergey Polyakov, Tatiana Kudryashova, Nikita Tarasov, EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization, 2019, 754  crossref
    5. Karamzin Yu., Kudryashova T., Polyakov S., “On One Class of Flow Schemes For the Convection-Diffusion Type Equation”, Math. Montisnigri, 41 (2018), 21–32  isi
    6. Tatiana Kudryashova', Sergey Polyakov, Nikita Tarasov, N. Mastorakis, V. Mladenov, A. Bulucea, “A novel parallel algorithm for 3D modelling electromagnetic purification of water”, MATEC Web Conf., 210 (2018), 04027  crossref
    7. Polyakov S.V., Karamzin Yu.N., Kudryasova T.A., Tarasov N.I., “Mathematical Modelling of Water Treatment Processes”, Math. Montisnigri, 40 (2017), 110–126  isi
    8. Sergey V. Polyakov, Yuri N. Karamzin, Tatiana A. Kudryashova, Viktoriia O. Podryga, Lecture Notes in Computer Science, 10187, Numerical Analysis and Its Applications, 2017, 550  crossref
    9. S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, I. V. Tsybulin, “Exponential difference schemes for solution of boundary problems for diffusion-convection equations”, Math. Models Comput. Simul., 9:1 (2017), 71–82  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:602
    Full-text PDF :155
    References:66
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025