Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1996, Volume 8, Number 11, Pages 3–40 (Mi mm1638)  

This article is cited in 13 scientific papers (total in 13 papers)

Mathematical models and computer experiment

Numerical stochastic models of non-equilibrium processes

G. I. Zmievskaya

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Abstract: Stochastic differential equations (SDE) are used for modeling of non-equilibrium physicalchemical processes in gases and plasmas. Statistical equivalence of the fto SDE and Fokker–Planck equations allows to treat a numerical solution of SDE as a method of the mathematical physics problems solution. The mutual relation between the coefficients of both problems is established using peculiarities of functional-coefficients of the Markov processes. The one- and two-dimensional stable algorithms are applied to analysis of the fluctuation phase of water vapor condensation and to calculation of plasma parameters in drift approximation (taking into account Landau's description of plasma collisions using anisotropic Rosenblth's potentials). The stochastic approach can be also used for constructions of models of both the phase transitions and plasma chemical processes as well as for creation of hybrid computations codes.
Received: 25.09.1995
Bibliographic databases:
Language: Russian
Citation: G. I. Zmievskaya, “Numerical stochastic models of non-equilibrium processes”, Mat. Model., 8:11 (1996), 3–40
Citation in format AMSBIB
\Bibitem{Zmi96}
\by G.~I.~Zmievskaya
\paper Numerical stochastic models of non-equilibrium processes
\jour Mat. Model.
\yr 1996
\vol 8
\issue 11
\pages 3--40
\mathnet{http://mi.mathnet.ru/mm1638}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472403}
\zmath{https://zbmath.org/?q=an:1063.82549}
Linking options:
  • https://www.mathnet.ru/eng/mm1638
  • https://www.mathnet.ru/eng/mm/v8/i11/p3
  • This publication is cited in the following 13 articles:
    1. A. V. Ivanov, “Kompensatsiya shuma chislennoi skhemy pri bolshikh vremennykh shagakh za schet temperaturnykh fluktuatsii v atomisticheskoi modeli magnetika”, Preprinty IPM im. M. V. Keldysha, 2024, 074, 12 pp.  mathnet  crossref
    2. A. V. Lukyanov, A. V. Ivanov, “Modelirovanie segnetoelektrikov na osnove uravneniya Fokkera-Planka i postroenie zamknutoi sistemy uravnenii momentov”, Preprinty IPM im. M. V. Keldysha, 2023, 022, 12 pp.  mathnet  crossref
    3. A. V. Ivanov, “Ispolzovanie biblioteki aiwlib na primere chislennogo modelirovaniya stokhasticheskogo rezonansa”, Preprinty IPM im. M. V. Keldysha, 2018, 089, 30 pp.  mathnet  crossref  elib
    4. T. A. Averina, G. I. Zmievskaya, “Neravnovesnaya stadiya fazovogo perekhoda pervogo roda: stokhasticheskie modeli i algoritmy resheniya”, Preprinty IPM im. M. V. Keldysha, 2017, 115, 32 pp.  mathnet  crossref
    5. A. V. Ivanov, S. A. Khilkov, “K voprosu o kineticheskom modelirovanii tsepochki fazovykh ostsillyatorov”, Preprinty IPM im. M. V. Keldysha, 2016, 130, 20 pp.  mathnet  crossref
    6. S. A. Zhdanov, A. V. Ivanov, “Primer avtomaticheskoi generatsii koda prilozheniya chislennogo modelirovaniya dlya resheniya uravneniya Fokkera–Planka”, Matem. modelirovanie, 27:9 (2015), 49–64  mathnet  mathscinet  elib
    7. E. V. Zipunova, A. V. Ivanov, “Vybor optimalnoi chislennoi skhemy dlya modelirovaniya sistemy uravnenii Landau–Lifshitsa c uchetom temperaturnykh fluktuatsii”, Matem. modelirovanie, 26:2 (2014), 33–49  mathnet
    8. A. V. Dmitriev, A. V. Ivanov, A. R. Khokhlov, “Numerical simulation of light propagation through a diffuser”, J. Math. Sci., 172:6 (2011), 782–787  mathnet  crossref
    9. A. V. Ivanov, “Kineticheskoe modelirovanie dinamiki magnetikov”, Matem. modelirovanie, 19:10 (2007), 89–104  mathnet  mathscinet  zmath
    10. Zmievskaya, GI, “A kinetic stochastic model of blistering and nanofilm islands deposition: self-organization problem”, Journal of Physics D-Applied Physics, 40:16 (2007), 4842  crossref  adsnasa  isi  scopus
    11. Bondareva, AL, “Investigation of surface modification resulting from high-temperature blistering by means of stochastic modeling”, Izvestiya Akademii Nauk Seriya Fizicheskaya, 66:7 (2002), 994  isi
    12. Zmievskaya G.I., Ivanov A.V., “Numerical simulation of the phase transition second order in condenced matter”, International Conference on Phenomena in Ionized Gases, 1999, 59–60  isi
    13. Zmievskaya, GI, “Stochastic analogs of nonequilibrium collisional processes”, Plasma Physics Reports, 23:4 (1997), 340  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:786
    Full-text PDF :728
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025