Loading [MathJax]/jax/output/SVG/config.js
Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2020, Volume 30, Issue 3, Pages 299–301
DOI: https://doi.org/10.1016/j.mencom.2020.05.012
(Mi mendc1176)
 

This article is cited in 10 scientific papers (total in 10 papers)

Communications

Electrochemical fingerprint of cytochrome c on a polymer/MWCNT nanocomposite electrode

V. V. Shumyantsevaabc, T. V. Bulkoac, A. V. Kuzikovabc, R. A. Masamrekhabc, D. V. Pergushovc, F. H. Schacherdef, L. V. Sigolaevaac

a V.N. Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation
b N.I. Pirogov Russian National Research Medical University, Moscow, Russian Federation
c Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
d Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
e Jena Center for Soft Matter, Friedrich-Schiller-University Jena, Jena, Germany
f Center for Energy and Environmental Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
Abstract: The electroactivity of cytochrome c on screen-printed graphite electrodes modified with stable dispersions of multi-walled carbon nanotubes in aqueous solution of amphiphilic poly(n-butyl acrylate)100-block-poly(acrylic acid)140 diblock copolymers was estimated. Using a broad potential window, the reduction and oxidation of heme iron at a near-zero potential, the electrooxidation of Tyr and Trp at +0.6V and the electrooxidation of heme at +0.8V were detected in a wide concentration range of 1–100μm with a limit of detection of 1–2μm. Such a multipoint detection can be used as an electrochemical fingerprint of cytochrome c for its electrochemical recognition and quantification in complex (bio)chemical analytes.
Keywords: cytochrome c, modified electrode, multi-walled carbon nanotubes, amphiphilic diblock copolymer, label-free detection, screen-printed electrodes, electrooxidation, electron transfer.
Document Type: Article
Language: English
Supplementary materials:
Supplementary_data_1.pdf (703.8 Kb)


Citation: V. V. Shumyantseva, T. V. Bulko, A. V. Kuzikov, R. A. Masamrekh, D. V. Pergushov, F. H. Schacher, L. V. Sigolaeva, “Electrochemical fingerprint of cytochrome c on a polymer/MWCNT nanocomposite electrode”, Mendeleev Commun., 30:3 (2020), 299–301
Linking options:
  • https://www.mathnet.ru/eng/mendc1176
  • https://www.mathnet.ru/eng/mendc/v30/i3/p299
  • This publication is cited in the following 10 articles:
    1. Kaidi Liu, Yinping Miao, Xuanyi Chen, Yangbo Bai, Jianquan Yao, “LPMG Sensor Based on TMF Period Coating PDMS for Detecting Cyt c”, IEEE Sensors J., 24:21 (2024), 34404  crossref
    2. Xinru Zhai, Xiaojun Liu, Huihui Dong, Mingzhen Lin, Xinxin Zheng, Qinzheng Yang, “Implementation of cytochrome c proteins and carbon nanotubes hybrids in bioelectrodes towards bioelectrochemical systems applications”, Bioprocess Biosyst Eng, 47:2 (2024), 159  crossref
    3. I. N. Kurochkin, A. D. Vasilyeva, E. G. Evtushenko, A. V. Eremenko, D. V. Pergushov, L. V. Sigolaeva, “Enzymes in the Development of Physico-Chemical Methods for Biomedical Research”, Moscow Univ. Chem. Bull., 78:4 (2023), 201  crossref
    4. Ilya N. Kurochkin, Alexandra D. Vasilyeva, Evgeniy G. Evtushenko, Arkady V. Eremenko, Dmitry V. Pergushov, Larisa V. Sigolaeva, “ENZYMES IN THE DEVELOPMENT OF PHYSICO-CHEMICAL METHODS FOR BIOMEDICAL RESEARCH”, Lomonosov chemistry journal, 64:№4, 2023 (2023), 353  crossref
    5. V. Lavanya, Dhamodharan Pavithra, Arumugam Mohanapriya, K. Santhakumar, Annamalai Senthil Kumar, “A π–π Bonding-Assisted Molecular-Wiring of Folded-Cytochrome c and Naphthoquinone and Its Electron-Relay-Based Bioelectrocatalytic H2O2 Reduction Reaction Visualized by Redox-Competitive Scanning Electrochemical Microscopy”, Langmuir, 39:33 (2023), 11556  crossref
    6. Pavel Yudaev, Vladimir Chuev, Bogdan Klyukin, Andrey Kuskov, Yaroslav Mezhuev, Evgeniy Chistyakov, “Polymeric Dental Nanomaterials: Antimicrobial Action”, Polymers, 14:5 (2022), 864  crossref
    7. Emadoddin Amin Sadrabadi, Ali Benvidi, Samira Yazdanparast, Leila Amiri-zirtol, “Fabrication of a label-free electrochemical aptasensor to detect cytochrome c in the early stage of cell apoptosis”, Microchim Acta, 189:8 (2022)  crossref
    8. Yuhong Zheng, Da Wang, Xiaolong Li, Ziyang Wang, Qingwei Zhou, Li Fu, Yunlong Yin, David Creech, “Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints”, Biosensors, 11:10 (2021), 403  crossref
    9. Victoria V. Shumyantseva, Lubov E. Agafonova, Tatiana V. Bulko, Alexey V. Kuzikov, Rami A. Masamrekh, Jiayin Yuan, Dmitry V. Pergushov, Larisa V. Sigolaeva, “Electroanalysis of Biomolecules: Rational Selection of Sensor Construction”, Biochemistry Moscow, 86:S1 (2021), S140  crossref
    10. Larisa V. Sigolaeva, Tatiana V. Bulko, Apollinariya Yu. Konyakhina, Alexey V. Kuzikov, Rami A. Masamrekh, Johannes B. Max, Moritz Köhler, Felix H. Schacher, Dmitry V. Pergushov, Victoria V. Shumyantseva, “Rational Design of Amphiphilic Diblock Copolymer/MWCNT Surface Modifiers and Their Application for Direct Electrochemical Sensing of DNA”, Polymers, 12:7 (2020), 1514  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Statistics & downloads:
    Abstract page:28
    Full-text PDF :5
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025