Matematicheskaya Biologiya i Bioinformatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Biolog. Bioinform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Biologiya i Bioinformatika, 2018, Volume 13, Issue Suppl., Pages t70–t83
DOI: https://doi.org/10.17537/2018.13.t70
(Mi mbb364)
 

This article is cited in 2 scientific papers (total in 2 papers)

Translations of Published Articles

The use of connected masks for reconstructing the single particle image from X-ray diffraction data. III. Maximum-likelihood based strategies to select solution of the phase problem

N. L. Luninaa, T. E. Petrovaa, A. G. Urzhumtsevbc, V. Y. Lunina

a Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
b Département de Physique, Faculté des Sciences et des Technologies, Université de Lorraine, 54506 Vandoeuvre-l s-Nancy, France
c Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, 1 rue Laurent Fries, BP 10142, Illkirch, 67404, France
References:
Abstract: The main experimental limitation of biological crystallography is associated with the need to prepare the object under study in the form of a single crystal. New powerful X-ray sources, namely free-electron X-ray lasers, makes it possible to raise the question of the determination of the structure of isolated biological macromolecules and their complexes in practice. An additional advantage of working with isolated particles is the possibility to obtain information about scattering in all directions, and not only in those limited by the Laue-Bragg diffraction conditions. This significantly facilitates the solution of the phase problem of X-ray diffraction analysis. This paper is devoted to two lines of development of the method for solving the phase problem, proposed earlier by the authors, which is based on the random scanning of the configuration space of potential solutions of the phase problem. The paper suggests a new criterion for the selection of "candidates" for solving the phase problem in the process of scanning. It involves the maximization of statistical likelihood, and its effectiveness is shown in test calculations. The second line concerns the choice of the optimal scanning strategy. It is shown that the gradual expansion of the set of experimental data used in the work allows obtaining solutions of a higher quality than those obtained with all available data included into the work simultaneously from the beginning.
Key words: X-ray crystallography, the phase problem, XFEL, single particle diffraction.
Funding agency Grant number
Russian Foundation for Basic Research 16-04-01037_а
Agence Nationale de la Recherche ANR-10-INBS-05
This work was supported by the Russian Foundation for Basic Research (project 16-04-01037a). AU acknowledges the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC.
Received 25.06.2018, Published 29.06.2018
Document Type: Article
UDC: 577.3
Language: English
Citation: N. L. Lunina, T. E. Petrova, A. G. Urzhumtsev, V. Y. Lunin, “The use of connected masks for reconstructing the single particle image from X-ray diffraction data. III. Maximum-likelihood based strategies to select solution of the phase problem”, Mat. Biolog. Bioinform., 13, Suppl. (2018), t70–t83
Citation in format AMSBIB
\Bibitem{LunPetUrz18}
\by N.~L.~Lunina, T.~E.~Petrova, A.~G.~Urzhumtsev, V.~Y.~Lunin
\paper The use of connected masks for reconstructing the single particle image from X-ray diffraction data. III. Maximum-likelihood based strategies to select solution of the phase problem
\jour Mat. Biolog. Bioinform.
\yr 2018
\vol 13
\pages t70--t83
\issueinfo Suppl.
\mathnet{http://mi.mathnet.ru/mbb364}
\crossref{https://doi.org/10.17537/2018.13.t70}
Linking options:
  • https://www.mathnet.ru/eng/mbb364
  • https://www.mathnet.ru/eng/mbb/v13/i3/p70
    Cycle of papers Translation
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024