Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2019, Volume 12, Issue 3, Pages 351–354
DOI: https://doi.org/10.17516/1997-1397-2019-12-3-351-354
(Mi jsfu767)
 

The highest dimension of commutative subalgebras in Chevalley algebras

Galina S. Suleimanova

Khakas Technical Institute, Branch of Siberian Federal University, Shchetinkin, 27, Abakan, 665017, Russia
References:
Abstract: Let $L_\Phi(K)$ denotes a Chevalley algebra with the root system $\Phi$ over a field $K$. In 1945 A. I. Mal'cev investigated the problem of describing abelian subgroups of highest dimension in complex simple Lie groups. He solved this problem by transition to complex Lie algebras and by reduction to the problem of describing commutative subalgebras of highest dimension in the niltriangular subalgebra. Later these methods were modified and applied for the problem of describing large abelian subgroups in finite Chevalley groups. The main result of this article allows to calculate the highest dimension of commutative subalgebras in a Chevalley algebra $L_\Phi (K)$ over an arbitrary field.
Keywords: Chevalley algebra, commutative subalgebra.
Received: 17.12.2018
Received in revised form: 20.01.2019
Accepted: 20.02.2019
Bibliographic databases:
Document Type: Article
UDC: 512.554.3
Language: English
Citation: Galina S. Suleimanova, “The highest dimension of commutative subalgebras in Chevalley algebras”, J. Sib. Fed. Univ. Math. Phys., 12:3 (2019), 351–354
Citation in format AMSBIB
\Bibitem{Sul19}
\by Galina~S.~Suleimanova
\paper The highest dimension of commutative subalgebras in Chevalley algebras
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 3
\pages 351--354
\mathnet{http://mi.mathnet.ru/jsfu767}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-3-351-354}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471028500010}
Linking options:
  • https://www.mathnet.ru/eng/jsfu767
  • https://www.mathnet.ru/eng/jsfu/v12/i3/p351
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :45
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024