Loading [MathJax]/jax/output/CommonHTML/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2019, Volume 12, Issue 3, Pages 355–370
DOI: https://doi.org/10.17516/1997-1397-2019-12-3-355-370
(Mi jsfu760)
 

This article is cited in 1 scientific paper (total in 1 paper)

Global in space regularity results for the heat equation with Robin–Neumann type boundary conditions in time-varying domains

Tahir Boudjeriou, Arezki Kheloufi

Bejaia University, Bejaia, 6000, Algeria
Full-text PDF (219 kB) Citations (1)
References:
Abstract: This article deals with the heat equation
$$ \partial _{t}u-\partial _{x}^{2} u=f\; \text{in}\; D,\; D =\left\{ \left( t,x\right) \in \mathbb{R}^{2}:a<t<b,\psi \left( t\right) <x<+\infty\right\} $$
with the function $\psi$ satisfying some conditions and the problem is supplemented with boundary conditions of Robin-Neumann type. We study the global regularity problem in a suitable parabolic Sobolev space. We prove in particular that for $f\in L^{2}(D)$ there exists a unique solution $u$ such that $u,\; \partial_{t}u,\; \partial_{x}^{j}u\in L^{2}\left( D\right),j=1,\;2.$ The proof is based on the domain decomposition method. This work complements the results obtained in [10].
Keywords: heat equation, unbounded non-cylindrical domains, Robin condition, Neumann condition, anisotropic Sobolev spaces.
Received: 27.04.2018
Received in revised form: 18.01.2019
Accepted: 06.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Tahir Boudjeriou, Arezki Kheloufi, “Global in space regularity results for the heat equation with Robin–Neumann type boundary conditions in time-varying domains”, J. Sib. Fed. Univ. Math. Phys., 12:3 (2019), 355–370
Citation in format AMSBIB
\Bibitem{BouKhe19}
\by Tahir~Boudjeriou, Arezki~Kheloufi
\paper Global in space regularity results for the heat equation with Robin--Neumann type boundary conditions in time-varying domains
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 3
\pages 355--370
\mathnet{http://mi.mathnet.ru/jsfu760}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-3-355-370}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471028500011}
Linking options:
  • https://www.mathnet.ru/eng/jsfu760
  • https://www.mathnet.ru/eng/jsfu/v12/i3/p355
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025