Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2017, Volume 10, Issue 1, Pages 16–21
DOI: https://doi.org/10.17516/1997-1397-2017-10-1-16-21
(Mi jsfu517)
 

This article is cited in 11 scientific papers (total in 11 papers)

Improving the accuracy of the probability density function estimation

Boris S. Dobronets, Olga A. Popova

Institute of Space and Information Technology, Siberian Federal University, Kirenskogo, 26, Krasnoyarsk, 660074, Russia
References:
Abstract: The paper considers the new approach to the reconstruction of the probability density function similarly the averaged shifted histogram method. An algorithm is used Richardson's extrapolation for increasing accuracy. We prove the estimates of the accuracy of the probability density function and its second derivative to choose the optimal settings for smoothing the histogram and kernel estimators and to consider the optimal choice problem of the bandwidth parameter. Presented the results of numerical experiments.
Keywords: MISE, error estimate, Richardson's extrapolation, Runge's rule, probability density functions estimation, probability density function derivatives, Numerical probabilistic analysis.
Received: 03.06.2016
Received in revised form: 09.09.2016
Accepted: 10.11.2016
Bibliographic databases:
Document Type: Article
UDC: 519.24
Language: English
Citation: Boris S. Dobronets, Olga A. Popova, “Improving the accuracy of the probability density function estimation”, J. Sib. Fed. Univ. Math. Phys., 10:1 (2017), 16–21
Citation in format AMSBIB
\Bibitem{DobPop17}
\by Boris~S.~Dobronets, Olga~A.~Popova
\paper Improving the accuracy of the probability density function estimation
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2017
\vol 10
\issue 1
\pages 16--21
\mathnet{http://mi.mathnet.ru/jsfu517}
\crossref{https://doi.org/10.17516/1997-1397-2017-10-1-16-21}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412012600002}
Linking options:
  • https://www.mathnet.ru/eng/jsfu517
  • https://www.mathnet.ru/eng/jsfu/v10/i1/p16
  • This publication is cited in the following 11 articles:
    1. Tong Wang, Mengsi Cai, Xiao Ouyang, Ziqiang Cao, Tie Cai, Xu Tan, Xin Lu, “Anomaly Detection Based on Convex Analysis: A Survey”, Front. Phys., 10 (2022)  crossref
    2. B S Dobronets, O A Popova, “Modeling Under Uncertainty: a Comparison of Approaches”, J. Phys.: Conf. Ser., 1715:1 (2021), 012061  crossref
    3. B. S. Dobronets, O. A. Popova, “Vychislitelnye aspekty tsifrovoi ekonomiki”, UBS, 84 (2020), 114–129  mathnet  crossref
    4. B. Dobronets, O. Popova, A. Merko, “Computational probabilistic analysis and transformation method in the earth remote research”, Regional Problems of Earth Remote Sensing (Rpers 2020), E3S Web of Conferences, 223, eds. G. Gennady, M. Noskov, Maglinets, A., EDP Sciences, 2020, 02001  crossref  isi  scopus
    5. B S Dobronets, O A Popova, “Computational Probabilistic Analysis of Distributional Time Series”, J. Phys.: Conf. Ser., 1680:1 (2020), 012008  crossref
    6. Boris Dobronets, Olga Popova, V.B. Kashkin, V. Kharuk, E. Loupian, Y.A. Maglinets, M.V. Noskov, L.G. Sverdlik, G.M. Tsibulśkii, “The Reliability of Numerical Modeling in Remote Sensing Data Analysis”, E3S Web Conf., 149 (2020), 02012  crossref
    7. B. S. Dobronets, O. A. Popova, “Computational aspects of probabilistic extensions”, Int. J. Geotech. Earthq., 2019, no. 47, 41–48  crossref  isi  scopus
    8. O. A. Popova, “Using Richardson extrapolation to improve the accuracy of processing and analyzing empirical data”, Meas. Tech., 62:2 (2019), 111–117  crossref  isi  scopus
    9. B. Dobronets, O. Popova, “Numerical analysis for problems of remote sensing with random input data”, Regional Problems of Earth Remote Sensing (Rpers 2018), E3S Web of Conferences, 75, eds. G. Tsibulskiy, M. Noskov, E. Lupyan, L. Sverdlik, A. Sagatelian, V. Kharuk, V. Kashkin, EDP Sciences, 2019, 01004  crossref  isi  scopus
    10. B. S. Dobronets, O. A. Popova, “Improving reliability of aggregation, numerical simulation and analysis of complex systems by empirical data”, XI All-Russian Scientific and Practical Conference (With International Participation) Automation Systems in Education, Science and Production, 2017, IOP Conference Series-Materials Science and Engineering, 354, IOP Publishing Ltd, 2018, 012006  crossref  isi  scopus
    11. B. S. Dobronets, O. A. Popova, “Piecewise polynomial aggregation as preprocessing for data numerical modeling”, International Conference Information Technologies in Business and Industry 2018, Journal of Physics Conference Series, 1015, IOP Publishing Ltd, 2018, 032028  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :100
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025