Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2012, Volume 5, Issue 2, Pages 256–263 (Mi jsfu240)  

This article is cited in 4 scientific papers (total in 4 papers)

Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces

Marina S. Rogozina

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (172 kB) Citations (4)
References:
Abstract: We study the numerical stability of the multilayer finite difference schemes by using methods of the theory of amoebas of algebraic hypersurfaces. We give a necessary condition for the stability of a Cauchy problem for a multilayer scheme and show that it is not a sufficient one. Therefore, we formulate and prove a sufficient condition for the stability.
Keywords: difference scheme, Cauchy problem, stability, amoeba of algebraic hypersurfaces.
Received: 18.12.2011
Received in revised form: 25.01.2012
Accepted: 10.02.2012
Document Type: Article
UDC: 517.55
Language: Russian
Citation: Marina S. Rogozina, “Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces”, J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 256–263
Citation in format AMSBIB
\Bibitem{Rog12}
\by Marina~S.~Rogozina
\paper Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2012
\vol 5
\issue 2
\pages 256--263
\mathnet{http://mi.mathnet.ru/jsfu240}
Linking options:
  • https://www.mathnet.ru/eng/jsfu240
  • https://www.mathnet.ru/eng/jsfu/v5/i2/p256
  • This publication is cited in the following 4 articles:
    1. Marina S. Apanovich, Evgeny K. Leinartas, “Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients”, Zhurn. SFU. Ser. Matem. i fiz., 10:2 (2017), 199–205  mathnet  crossref
    2. E. K. Leǐnartas, M. S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Siberian Math. J., 56:1 (2015), 92–100  mathnet  crossref  mathscinet  isi  elib  elib
    3. Marina S. Rogozina, “On the correctness of polynomial difference operators”, Zhurn. SFU. Ser. Matem. i fiz., 8:4 (2015), 437–441  mathnet  crossref
    4. M. S. Rogozina, “On the Solvability of the Cauchy Problem for a Polynomial Difference Operator”, J. Math. Sci., 213:6 (2016), 887–896  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :121
    References:75
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025