Abstract:
New measurements of the flux and spectrum of reactor antineutrinos as functions of the distance from the center of the core of the SM-3 reactor (Dimitrovgrad, Russia) in the range of $6$–$12$ m have been reported. Additional measurements have been performed. The amount of experimental data has been increased by almost a factor of $2$. The model-independent analysis has been performed in order to determine the oscillation parameters $\Delta m_{14}^2$ and $\sin^22\theta_{14}$. The method of coherent addition of measurement results allows the direct demonstration of the effect of oscillations. The effect of oscillations is observed near the values $\Delta m_{14}^2=7.25\pm0.13_{\text{st}}\pm1.08_{\text{sys}}$ and $\sin^22\theta=0.26\pm0.08_{\text{stat}}\pm0.05_{\text{syst}}$. This result has been compared to the results of other experiments on the search for the sterile neutrino. The joint analysis of the Neutrino-4 experiment with the gallium and reactor anomalies gives the value $\sin^22\theta_{14}\approx0.19\pm0.04$$(4.6\sigma)$. The results of the Neutrino-4 experiment have been compared to the results of the NEOS, DANSS, STEREO, and PROSPECT reactor experiments; MiniBooNE and LSND accelerator experiments; and IceCube experiment. According to the Neutrino-4 experiment (under the assumption that $m_4^2\approx\Delta m_{14}^2$), the mass of the sterile neutrino is $m_4=2.68\pm0.13\,$eV. The calculations with the estimates of the mixing angles from other experiments give the values $m_{v_e}^{\text{eff}}=(0.58\pm0.09)\,$eV, $m_{v_\mu}^{\text{eff}}=(0.42\pm0.24)\,$eV, and $m_{v_\tau}^{\text{eff}}\leq0.65\,$eV for the masses of the electron, muon, and tau neutrinos, respectively. The extended Pontecorvo–Maki–Nakagawa–Sakata matrix for the $3+1$ model with one sterile neutrino is given.
Citation:
A. P. Serebrov, R. M. Samoilov, “Analysis of the results of the Neutrino-4 experiment on the search for the sterile neutrino and comparison with results of other experiments”, Pis'ma v Zh. Èksper. Teoret. Fiz., 112:4 (2020), 211–225; JETP Letters, 112:4 (2020), 199–212
\Bibitem{SerSam20}
\by A.~P.~Serebrov, R.~M.~Samoilov
\paper Analysis of the results of the Neutrino-4 experiment on the search for the sterile neutrino and comparison with results of other experiments
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2020
\vol 112
\issue 4
\pages 211--225
\mathnet{http://mi.mathnet.ru/jetpl6234}
\crossref{https://doi.org/10.31857/S1234567820160016}
\elib{https://elibrary.ru/item.asp?id=45201516}
\transl
\jour JETP Letters
\yr 2020
\vol 112
\issue 4
\pages 199--212
\crossref{https://doi.org/10.1134/S0021364020160122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000583553500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85093927481}
This publication is cited in the following 23 articles:
Sabila Parveen, Mehedi Masud, Mary Bishai, Poonam Mehta, J. High Energ. Phys., 2025:1 (2025)
I. R. Barabanov, A. V. Veresnikova, A. A. Moiseeva, V. P. Morgalyuk, G. Ya. Novikova, E. A. Yanovich, Phys. Atom. Nuclei, 86:2 (2023), 119
Yoon Jongkwan, Yoshiki Yamaguchi, Yowichi Fujita, Yoshinori Fukao, Eitaro Hamada, Tetsuichi Kishishita, Youichi Igarashi, Masayoshi Shoji, Kazuki Ueno, Proceedings of the 13th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies, 2023, 35
A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, J. Exp. Theor. Phys., 137:1 (2023), 55
A. P Serebrov, R. M Samoylov, M. E Chaykovskiy, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 164:1 (2023), 66
I. R. Barabanov, A. V. Veresnikova, A. A. Moiseeva, V. P. Morgalyuk, G. Ya. Novikova, E. A. Yanovich, Yadernaya fizika, 86:2 (2023), 310
A. P. Serebrov, R. M. Samoilov, O. M. Zherebtsov, Phys. Atom. Nuclei, 86:6 (2023), 1394
Athar M.S. Barwick S.W. Brunner T. Cao J. Danilov M. Inoue K. Kajita T. Kowalski M. Lindner M. Long K.R. Palanque-Delabrouille N. Rodejohann W. Schellman H. Scholberg K. Seo S.-H. Smith N.J.T. Winter W. Zeller G.P. Funchal R.Z., Prog. Part. Nucl. Phys., 124 (2022), 103947
A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, O. M. Zherebtsov, JETP Letters, 116:10 (2022), 669–682
V. V. Barinov, S. N. Danshin, V. N. Gavrin, V. V. Gorbachev, D. S. Gorbunov, T. V. Ibragimova, Yu. P. Kozlova, L. V. Kravchuk, V. V. Kuzminov, B. K. Lubsandorzhiev, Yu. M. Malyshkin, I. N. Mirmov, A. A. Shikhin, E. P. Veretenkin, B. T. Cleveland, H. Ejiri, S. R. Elliott, I. Kim, R. Massarczyk, D. Frekers, W. C. Haxton, V. A. Matveev, G. V. Trubnikov, J. S. Nico, A. L. Petelin, V. A. Tarasov, A. I. Zvir, R. G. H. Robertson, D. Sinclair, J. F. Wilkerson, Phys. Rev. C, 105:6 (2022)
Mikhail Danilov, Phys. Scr., 97:9 (2022), 094001
V. S. Basto-Gonzalez, D. V. Forero, C. Giunti, A. A. Quiroga, C. A. Ternes, Phys. Rev. D, 105:7 (2022)
A. Serebrov, A. Fomin, R. Samoilov, Moscow Univ. Phys., 77:2 (2022), 401
V. V. Barinov, B. T. Cleveland, S. N. Danshin, H. Ejiri, S. R. Elliott, D. Frekers, V. N. Gavrin, V. V. Gorbachev, D. S. Gorbunov, W. C. Haxton, T. V. Ibragimova, I. Kim, Yu. P. Kozlova, L. V. Kravchuk, V. V. Kuzminov, B. K. Lubsandorzhiev, Yu. M. Malyshkin, R. Massarczyk, V. A. Matveev, I. N. Mirmov, J. S. Nico, A. L. Petelin, R. G. H. Robertson, D. Sinclair, A. A. Shikhin, V. A. Tarasov, G. V. Trubnikov, E. P. Veretenkin, J. F. Wilkerson, A. I. Zvir, Phys. Rev. Lett., 128:23 (2022)
A. P. Serebrov, R. M. Samoilov, V. G. Ivochkin, A. K. Fomin, V. G. Zinoviev, P. V. Neustroev, V. L. Golovtsov, S. S. Volkov, A. V. Chernyj, M. Zherebtsov, M. E. Chaikovskii, A. L. Petelin, A. L. Izhutov, A. A. Tuzov, S. A. Sazontov, M. O. Gromov, V. V. Afanasiev, M. E. Zaytsev, A. A. Gerasimov, V. V. Fedorov, Phys. Rev. D, 104:3 (2021), 032003
G. Ya. Novikova, V. P. Morgalyuk, E. A. Yanovich, Russ. J. Inorg. Chem., 66:8, SI (2021), 1161–1168
N. Fiza, M. Masud, M. Mitra, J. High Energy Phys., 2021, no. 9, 162
Y. Abreu, Y. Amhis, L. Arnold, G. Barber, W. Beaumont, S. Binet, I. Bolognino, M. Bongrand, J. Borg, D. Boursette, V. Buridon, B. C. Castle, H. Chanal, K. Clark, B. Coupe, P. Crochet, D. Cussans, A. De Roeck, D. Durand, T. Durkin, M. Fallot, L. Ghys, L. Giot, K. Graves, B. Guillon, D. Henaff, B. Hosseini, S. Jenzer, S. Kalcheva, L. N. Kalousis, M. Labare, G. Lehaut, S. Manley, L. Manzanillas, J. Mermans, I. Michiels, S. Monteil, C. Moortgat, D. Newbold, V. Pestel, K. Petridis, I. Pinera, L. Popescu, N. Roy, D. Ryckbosch, N. Ryder, D. Saunders, M.-H. Schune, M. Settimo, H. R. Sfar, L. Simard, A. Vacheret, G. Vandierendonck, S. Van Dyck, P. Van Mulders, N. van Remortel, S. Vercaemer, M. Verstraeten, B. Viaud, A. Weber, F. Yermia, J. Instrum., 16:2 (2021), P02025
C. Giunti, Y. F. Li, C. A. Ternes, Y. Y. Zhang, Phys. Lett. B, 816 (2021), 136214
V. A. Naumov, D. S. Shkirmanov, Universe, 7:7 (2021), 246