Abstract:
It has been shown that the interaction between Faraday waves excited on the surface of He II by intense vertical vibrations of the sample cell can lead to the emergence of macroscopic vortices on the surface of the superfluid liquid, as in the case of an ordinary classical liquid. Visualization of phenomena on the surface of He II by light glass tracers with a diameter of 0.2 mm localized beneath the surface of He II has allowed observing the emergence of a vortex lattice on the surface of the vibrating superfluid liquid in square and cylindrical cells and the evolution of the vortex structure after switching off the pumping.
Citation:
A. A. Levchenko, L. P. Mezhov-Deglin, A. A. Pel'menev, “Faraday waves and vortices on the surface of superfluid He II”, Pis'ma v Zh. Èksper. Teoret. Fiz., 106:4 (2017), 233–238; JETP Letters, 106:4 (2017), 252–257
\Bibitem{LevMezPel17}
\by A.~A.~Levchenko, L.~P.~Mezhov-Deglin, A.~A.~Pel'menev
\paper Faraday waves and vortices on the surface of superfluid He II
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2017
\vol 106
\issue 4
\pages 233--238
\mathnet{http://mi.mathnet.ru/jetpl5351}
\crossref{https://doi.org/10.7868/S0370274X17160093}
\elib{https://elibrary.ru/item.asp?id=29811449}
\transl
\jour JETP Letters
\yr 2017
\vol 106
\issue 4
\pages 252--257
\crossref{https://doi.org/10.1134/S0021364017160093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413418400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032201639}
Linking options:
https://www.mathnet.ru/eng/jetpl5351
https://www.mathnet.ru/eng/jetpl/v106/i4/p233
This publication is cited in the following 20 articles:
Raffaele Colombi, Niclas Rohde, Michael Schlüter, Alexandra von Kameke, Fluids, 7:5 (2022), 148
E. V. Lebedeva, A. M. Dyugaev, P. D. Grigoriev, J. Exp. Theor. Phys., 134:5 (2022), 656
R. Colombi, M. Schlueter, A. von Kameke, Exp. Fluids, 62:1 (2021), 8
D. Hernandez-Rajkov, J. Eduardo Padilla-Castillo, A. del Rio-Lima, A. Gutierrez-Valdes, F. Jackson Poveda-Cuevas, J. Amin Seman, New J. Phys., 23:10 (2021), 103038
S. V. Filatov, E. V. Lebedeva, A. A. Levchenko, L. P. Mezhov-Deglin, A. V. Poplevin, Results Phys., 29 (2021), 104677
I. A. Remizov, M. R. Sultanova, A. A. Levchenko, L. P. Mezhov-Deglin, Low Temp. Phys., 47:5 (2021), 378–382
A. A. Pelmenev, A. A. Levchenko, L. P. Mezhov-Deglin, Low Temp. Phys., 46:2 (2020)
N. Francois, H. Xia, H. Punzmann, M. Shats, Phys. Rev. Lett., 124:25 (2020), 254501
R. Nomura, Y. Okuda, Rev. Mod. Phys., 92:4 (2020), 041003
L. Mezhov-Deglin, A. Pel'menev, A. Levchenko, Mater. Lett., 238 (2019), 226–228
A. A. Levchenko, E. V. Lebedeva, L. P. Mezhov-Deglin, A. A. Pelmenev, Low Temp. Phys., 45:5 (2019)
A. A. Pel'menev, A. A. Levchenko, L. P. Mezhov-Deglin, JETP Letters, 110:8 (2019), 551–556
P. Moroshkin, P. Leiderer, T. B. Moeller, K. Kono, Phys. Fluids, 31:7 (2019), 077104
S. V. Filatov, A. A. Levchenko, L. P. Mezhov-Deglin, Phys. Wave Phenom., 27:4 (2019), 327–332
L. P. Mezhov-Deglin, A. A. Levchenko, A. A. Pel'menev, I. A. Remizov, J. Exp. Theor. Phys., 129:4, SI (2019), 591–606
N. M. Zubarev, P. M. Lushnikov, J. Exp. Theor. Phys., 129:4, SI (2019), 651–658
P. M. Lushnikov, N. M. Zubarev, Phys. Rev. Lett., 120:20 (2018), 204504
A. V. Bazilevskii, V. A. Kalinichenko, A. N. Rozhkov, JETP Letters, 107:11 (2018), 684–689
A. A. Levchenko, L. P. Mezhov-Deglin, A. A. Pelmenev, Low Temp. Phys., 44:10 (2018), 1005–1019
A. M. Dyugaev, E. V. Lebedeva, JETP Letters, 106:12 (2017), 788–792