Abstract:
We study a novel type of graphene-based superlattices formed owing to a periodic modulation of the Fermi surface. Such a modulation is possible for graphene deposited on a striped substrate made of materials with substantially different values of the dc permittivity. Similar superlattices appear also in graphene sheets applied over substrates with a periodic array of parallel grooves. We suggest a model describing such superlattices. Using the transfer-matrix technique, we determine the dispersion relation and calculate the energy spectrum of these superlattices. We also analyze at a qualitative level the current-voltage characteristics of the system under study.
Citation:
P. V. Ratnikov, A. P. Silin, “Novel type of superlattices based on gapless graphene with the alternating Fermi velocity”, Pis'ma v Zh. Èksper. Teoret. Fiz., 100:5 (2014), 349–356; JETP Letters, 100:5 (2014), 311–318
\Bibitem{RatSil14}
\by P.~V.~Ratnikov, A.~P.~Silin
\paper Novel type of superlattices based on gapless graphene with the alternating Fermi velocity
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2014
\vol 100
\issue 5
\pages 349--356
\mathnet{http://mi.mathnet.ru/jetpl4112}
\crossref{https://doi.org/10.7868/S0370274X14170056}
\elib{https://elibrary.ru/item.asp?id=21997972}
\transl
\jour JETP Letters
\yr 2014
\vol 100
\issue 5
\pages 311--318
\crossref{https://doi.org/10.1134/S0021364014170123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345080400005}
\elib{https://elibrary.ru/item.asp?id=24027542}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920167203}
Linking options:
https://www.mathnet.ru/eng/jetpl4112
https://www.mathnet.ru/eng/jetpl/v100/i5/p349
This publication is cited in the following 30 articles:
H García-Cervantes, G J Escalera Santos, F J García-Rodríguez, R Rodríguez-González, I Rodríguez-Vargas, J. Phys.: Condens. Matter, 36:6 (2024), 065302
G.J. Escalera Santos, F.J. García-Rodríguez, H. García-Cervantes, I. Rodríguez-Vargas, Micro and Nanostructures, 164 (2022), 107158
Bezerra I.S.F. Lima J.R.F., Solid State Commun., 340 (2021), 114511
I. S. F. Bezerra, J. R. F. Lima, Physica E, 123 (2020), 114171
P. V. Ratnikov, Phys. Rev. B, 101:12 (2020), 125301
P. V. Badikova, S. Yu. Glazov, G. A. Syrodoev, Semiconductors, 53:7 (2019), 911–918
E. I. Kukhar, S. V. Kryuchkov, Superlattices Microstruct., 133 (2019), UNSP 106183
Pavel V. Ratnikov, Handbook of Graphene, 2019, 29
H. Liu, Ya. Du, G. Yang, G. Zhu, Yu. Gao, W. Ding, J. Fire Sci., 36:2 (2018), 111–128
P. V. Ratnikov, Superlattices Microstruct., 115 (2018), 183–190
A. M. Korol, A. I. Sokolenko, I. V. Sokolenko, Low Temp. Phys., 44:8 (2018), 803–809
F. Martin-Vergara, F. Rus, F. R. Villatoro, Nonlinear Systems, v. 2, Springer Complexity, Nonlinear Phenomena in Biology, Optics and Condensed Matter, eds. J. Archilla, F. Palmero, M. Lemos, B. Sanchez-Rey, J. Casado-Pascual, Springer-Verlag Berlin, 2018, 85–110
S. G. Moiseev, Yu. S. Dadoenkova, A. S. Kadochkin, A. A. Fotiadi, V. V. Svetukhin, I. O. Zolotovskii, Ann. Phys.-Berlin, 530:11 (2018), 1800197
S. Moiseev, Yu. Dadoenkova, A. S. Kadochkin, K. Panajotov, A. Fotiadi, I. Zolotovskii, Nanophotonics VII, Proceedings of Spie, 10672, eds. D. Andrews, A. Bain, J. Nunzi, A. Ostendorf, Spie-Int Soc Optical Engineering, 2018, UNSP 106724M
Igor O. Zolotovskii, Yuliya S. Dadoenkova, Sergey G. Moiseev, Aleksei S. Kadochkin, Vyacheslav V. Svetukhin, Andrei A. Fotiadi, Phys. Rev. A, 97:5 (2018)
P. V. Ratnikov, A. P. Silin, Phys. Usp., 61:12 (2018), 1139–1174
A. M. Korol, S. I. Litvynchuk, Phys. Status Solidi B-Basic Solid State Phys., 254:4 (2017), UNSP 1600381
P. V. Ratnikov, JETP Letters, 106:12 (2017), 810–814
P. L. Pekh, A. P. Silin, Phys. Wave Phenom., 25:4 (2017), 249–253