Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 4, Pages 76–88
DOI: https://doi.org/10.26907/0021-3446-2023-4-76-88
(Mi ivm9871)
 

On modularity and algebraicity of the lattice of multiply $\omega$-composition Fitting classes

N. Yanga, N. N. Vorob'evb, I. I. Staselkab

a Jiangnan University, Wuxi, 214122 P. R. China
b Vitebsk State University named after P.M. Masherov, 33 Moskovsky Ave., Vitebsk, 210038 Belarus
References:
Abstract: In this paper it was found the sufficient conditions for the modularity equality for the collections of $n$-multiply $\omega$-composition Fitting classes $(n > 0)$. It was proved that the lattice of all $n$-multiply $\omega$-composition Fitting classes is algebraic $(n \geqslant 0)$.
Keywords: finite group, Fitting class, $\omega$-composition Fitting class, $\omega$-composition $H$-function of a Fitting class, $n$-multiply $\omega$-composition Fitting class, complete lattice of Fitting classes, modular lattice, algebraic lattice.
Funding agency Grant number
ГПНИ "Конвергенция-2025" 20210495
Received: 16.07.2022
Revised: 16.07.2022
Accepted: 21.12.2022
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. Yang, N. N. Vorob'ev, I. I. Staselka, “On modularity and algebraicity of the lattice of multiply $\omega$-composition Fitting classes”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4, 76–88
Citation in format AMSBIB
\Bibitem{YanVorSta23}
\by N.~Yang, N.~N.~Vorob'ev, I.~I.~Staselka
\paper On modularity and algebraicity of the lattice of multiply $\omega$-composition Fitting classes
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 4
\pages 76--88
\mathnet{http://mi.mathnet.ru/ivm9871}
\crossref{https://doi.org/10.26907/0021-3446-2023-4-76-88}
Linking options:
  • https://www.mathnet.ru/eng/ivm9871
  • https://www.mathnet.ru/eng/ivm/y2023/i4/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025