Abstract:
Sufficient conditions for the absolute convergence of double Fourier series of uniform almost periodic functions are investigated in the paper in the case when the Fourier exponents have a single limit point at zero. As a structural characteristic of the function under consideration, we use the value built on the basis of the Laplace transform.
Keywords:
almost-periodic functions, double Fourier series, function spectrum, Fourier coefficients, limit point at zero, Laplace transform.
Citation:
F. M. Talbakov, “On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4, 65–75
\Bibitem{Tal23}
\by F.~M.~Talbakov
\paper On the absolute convergence of double Fourier series of uniform almost-periodic functions in a uniform metric
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 4
\pages 65--75
\mathnet{http://mi.mathnet.ru/ivm9870}
\crossref{https://doi.org/10.26907/0021-3446-2023-4-65-75}
Linking options:
https://www.mathnet.ru/eng/ivm9870
https://www.mathnet.ru/eng/ivm/y2023/i4/p65
This publication is cited in the following 2 articles: