Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 1, Pages 75–86
DOI: https://doi.org/10.26907/0021-3446-2023-1-75-86
(Mi ivm9848)
 

On a class of nonlinear integral equations of the Hammerstein–Volterra type on a semiaxis

Kh. A. Khachatryanab, H. S. Petrosyanc

a Yerevan State University, 1 Alek Manukyan str., Yerevan, 0025 Republic of Armenia
b Institute of Mathematics, National Academy of Sciences of Armenia, 24/5 Marshal Baghramian Ave., Yerevan, 0019 Republic of Armenia
c Armenian National Agrarian University, 74 Teryan str., Yerevan, 0009 Republic of Armenia
References:
Abstract: In this note, we study a class of nonlinear integral equations with a monotone Hammerstein-Volterra type operator in the critical case. This class of equations occurs in the kinetic theory of gases in the framework of the study of the nonlinear kinetic integro-differential model Boltzmann equation. The combination of methods for constructing invariant cone segments for a nonlinear monotone operator with the methods of the theory of functions of a real variable makes it possible, with the help of specially chosen successive approximations, to construct a positive summable and bounded solution on a non-negative semiaxis for the above class of equations. With an additional constraint on nonlinearity, it is also possible to prove the uniqueness of the solution in a certain class of positive and summable functions on the non-negative semiaxis. At the end, illustrative examples of nonlinearity and the kernel are given, which are of both theoretical and applied interest.
Keywords: kernel, non-linearity, monotonicity, convergence, estimates, Caratheodory condition.
Received: 18.03.2022
Revised: 09.06.2022
Accepted: 29.06.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 1, Pages 64–73
DOI: https://doi.org/10.3103/S1066369X23010048
Document Type: Article
UDC: 517.968
Language: Russian
Citation: Kh. A. Khachatryan, H. S. Petrosyan, “On a class of nonlinear integral equations of the Hammerstein–Volterra type on a semiaxis”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1, 75–86; Russian Math. (Iz. VUZ), 67:1 (2023), 64–73
Citation in format AMSBIB
\Bibitem{KhaPet23}
\by Kh.~A.~Khachatryan, H.~S.~Petrosyan
\paper On a class of nonlinear integral equations of the Hammerstein--Volterra type on a semiaxis
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 1
\pages 75--86
\mathnet{http://mi.mathnet.ru/ivm9848}
\crossref{https://doi.org/10.26907/0021-3446-2023-1-75-86}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 1
\pages 64--73
\crossref{https://doi.org/10.3103/S1066369X23010048}
Linking options:
  • https://www.mathnet.ru/eng/ivm9848
  • https://www.mathnet.ru/eng/ivm/y2023/i1/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :32
    References:43
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024