Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 1, Pages 51–74
DOI: https://doi.org/10.26907/0021-3446-2023-1-51-74
(Mi ivm9847)
 

About linear homogeneous hypersurfaces in $ \Bbb R^4 $

A. V. Lobodaa, V. K. Kaverinab

a Voronezh State Technical University, 14 Moskovsky Ave., Voronezh, 394026 Russia
b Financial University under the Government of the Russian Federation, 49 Leningradsky Ave., Moscow, 125993 Russia
References:
Abstract: The article is related to the describing problem of affinely homogeneous hypersurfaces in the space $ \Bbb R^4 $ that have exactly $3$-dimensional affine symmetry algebras. For three types of solvable $3$-dimensional Lie algebras, their linearly homogeneous $3$-dimensional orbits in this space are studied, different from surfaces of the second order and cylindrical surfaces in $ \Bbb R^4 $ (which are of no interest in the problem under discussion).
The presence of two nontrivial commutation relations in each of the studied algebras leads to the essential difference between the situation with their orbits in $ \Bbb R^4 $ and the case of a $3$-dimensional Abelian algebra with a large family of affinely distinct (linearly homogeneous) orbits in the same space. It is proved that one of the studied types of Lie algebras does not admit nontrivial $4$-dimensional linear representations at all; a large number of $3$-dimensional orbits of representations of the other two types have rich symmetry algebras. At the same time for one of the three types of Lie algebras, a new family of linearly homogeneous orbits is obtained, which have precisely $3$-dimensional algebras of affine symmetries.
Keywords: hypersurface, homogeneous manifold, Lie algebra, linear representation, affine transformftion, vector field, Jordan normal matrix form, symbolic calculations.
Received: 15.03.2022
Revised: 07.08.2022
Accepted: 28.09.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 1, Pages 43–63
DOI: https://doi.org/10.3103/S1066369X2301005X
Document Type: Article
UDC: 514.74: 512.815
Language: Russian
Citation: A. V. Loboda, V. K. Kaverina, “About linear homogeneous hypersurfaces in $ \Bbb R^4 $”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1, 51–74; Russian Math. (Iz. VUZ), 67:1 (2023), 43–63
Citation in format AMSBIB
\Bibitem{LobKav23}
\by A.~V.~Loboda, V.~K.~Kaverina
\paper About linear homogeneous hypersurfaces in $ \Bbb R^4 $
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 1
\pages 51--74
\mathnet{http://mi.mathnet.ru/ivm9847}
\crossref{https://doi.org/10.26907/0021-3446-2023-1-51-74}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 1
\pages 43--63
\crossref{https://doi.org/10.3103/S1066369X2301005X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9847
  • https://www.mathnet.ru/eng/ivm/y2023/i1/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :17
    References:30
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024