Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 12, Pages 123–129
DOI: https://doi.org/10.26907/0021-3446-2022-12-123-129
(Mi ivm9843)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

On a conbined primality test

Sh. T. Ishmukhametov, N. A. Antonov, B. G. Mubarakov, G. G. Rubtsova

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (360 kB) Citations (3)
References:
Abstract: In this paper we consider a hybrid primality test consisting of checking the relation $2^{n-1}\equiv 1 (\bmod\ n)$ and the Lucas primality test. Let call this procedure as $\mathrm{L}2$-test. Composite integers passing $\mathrm{L}2$-test are called $\mathrm{L}2$-pseudoprime. In this paper we develop an effective algorithm for searching $\mathrm{L}2$-pseudoprimes of form $n\equiv\pm 2(\bmod 5)$. Using it we prove that there are no $\mathrm{L}2$-pseudoprimes of the mentioned form below $B=10^{23}$ (it is the currently reached boarder and it continues to increase).
Thus, $\mathrm{L}2$-test is a deterministic test at the current interval up to $B=10^{23}$ allowing the researchers to check an odd $n\equiv\pm 2(\bmod 5)$ for primality using a polynomial two-round procedure of rate $O(\ln^3 n)$.
Keywords: Lucas primality test, the Fermat test, probabilistic primality test, deterministic primality test.
Received: 17.11.2022
Revised: 17.11.2022
Accepted: 21.12.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 12, Pages 112–117
DOI: https://doi.org/10.3103/S1066369X22120088
Document Type: Article
UDC: 510.1
Language: Russian
Citation: Sh. T. Ishmukhametov, N. A. Antonov, B. G. Mubarakov, G. G. Rubtsova, “On a conbined primality test”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 12, 123–129; Russian Math. (Iz. VUZ), 66:12 (2022), 112–117
Citation in format AMSBIB
\Bibitem{IshAntMub22}
\by Sh.~T.~Ishmukhametov, N.~A.~Antonov, B.~G.~Mubarakov, G.~G.~Rubtsova
\paper On a conbined primality test
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 12
\pages 123--129
\mathnet{http://mi.mathnet.ru/ivm9843}
\crossref{https://doi.org/10.26907/0021-3446-2022-12-123-129}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 12
\pages 112--117
\crossref{https://doi.org/10.3103/S1066369X22120088}
Linking options:
  • https://www.mathnet.ru/eng/ivm9843
  • https://www.mathnet.ru/eng/ivm/y2022/i12/p123
    See also
    • On the Baillie PSW-conjecture
      Sh. T. Ishmukhametov, B. G. Mubarakov, G. G. Rubtsova, E. V. Oleynikova
      Izv. Vyssh. Uchebn. Zaved. Mat., 2024:4, 80–88
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :43
    References:26
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024