Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 12, Pages 113–122
DOI: https://doi.org/10.26907/0021-3446-2022-12-113-122
(Mi ivm9842)
 

This article is cited in 3 scientific papers (total in 3 papers)

Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method

Billal Elhamza, Abdelhak Hafdallah

Echahid Cheikh Larbi Tebessi University, Constantine str., Tebessa, 12002 Algeria
Full-text PDF (376 kB) Citations (3)
References:
Abstract: In this paper, we consider a wave equation with incomplete data, where we don't know the potential coefficient and the initial conditions. From observing the system in the boundary, we want to get information on the potential coefficient independently of the initial conditions. This can be obtained using the sentinel method of J. L. Lions, which is a functional insensitive to certain parameters. Shows us through the adjoint system that the existence of the sentinel is equivalent to an optimal control problem. We solve this optimal control problem by using the Hilbert Uniqueness Method (HUM).
Keywords: potential coefficient identification, incomplete data, sentinel method, optimal control problem, Hilbert uniqueness method.
Received: 18.04.2022
Revised: 30.06.2022
Accepted: 28.09.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 12, Pages 102–111
DOI: https://doi.org/10.3103/S1066369X22120027
Document Type: Article
UDC: 517
Language: Russian
Citation: Billal Elhamza, Abdelhak Hafdallah, “Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 12, 113–122; Russian Math. (Iz. VUZ), 66:12 (2022), 102–111
Citation in format AMSBIB
\Bibitem{ElhHaf22}
\by Billal~Elhamza, Abdelhak~Hafdallah
\paper Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 12
\pages 113--122
\mathnet{http://mi.mathnet.ru/ivm9842}
\crossref{https://doi.org/10.26907/0021-3446-2022-12-113-122}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 12
\pages 102--111
\crossref{https://doi.org/10.3103/S1066369X22120027}
Linking options:
  • https://www.mathnet.ru/eng/ivm9842
  • https://www.mathnet.ru/eng/ivm/y2022/i12/p113
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :21
    References:27
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024