Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, Number 9, Pages 22–30 (Mi ivm9032)  

This article is cited in 3 scientific papers (total in 3 papers)

The positive solutions to quasilinear elliptic inequalities on model Riemannian manifolds

E. A. Mazepa

Chair of Mathematical Analysis and Function Theory, Volgograd State University, 100 Universitetskii Ave., Volgograd, 400062 Russia
Full-text PDF (199 kB) Citations (3)
References:
Abstract: We investigate the problem of implementation of Liouville type theorems on the existence of positive solutions to some quasilinear elliptic inequalities on model (spherically symmetric) Riemannian manifolds. In particular, we find exact conditions for the existence and nonexistence of entire positive solutions to the studied inequalities on the Riemannian manifolds. The method is based on study of radially symmetric solutions to an ordinary differential equation generated by the basic inequality and establish the relationship of the existence of entire positive solutions to quasilinear elliptic inequalities and solvability of the Cauchy problem for this equation. Moreover, in the paper we apply classical methods of the theory of elliptic equations and inequalities the second order (the maximum principle, the principle of comparison, etc.). The results generalize similar results, obtained previously by Y. Naito and H. Usami for Euclidean space $\mathbf R^n$, as well as some earlier results of the papers by A. G. Losev and E. A. Mazepa.
Keywords: quasilinear elliptic inequalities, entire positive solutions, Liouville type theorems, conditions of existence, model Riemannian manifolds.
Received: 26.02.2014
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, Volume 59, Issue 9, Pages 18–25
DOI: https://doi.org/10.3103/S1066369X15090030
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: E. A. Mazepa, “The positive solutions to quasilinear elliptic inequalities on model Riemannian manifolds”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 9, 22–30; Russian Math. (Iz. VUZ), 59:9 (2015), 18–25
Citation in format AMSBIB
\Bibitem{Maz15}
\by E.~A.~Mazepa
\paper The positive solutions to quasilinear elliptic inequalities on model Riemannian manifolds
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2015
\issue 9
\pages 22--30
\mathnet{http://mi.mathnet.ru/ivm9032}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2015
\vol 59
\issue 9
\pages 18--25
\crossref{https://doi.org/10.3103/S1066369X15090030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943249027}
Linking options:
  • https://www.mathnet.ru/eng/ivm9032
  • https://www.mathnet.ru/eng/ivm/y2015/i9/p22
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024