Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, Number 9, Pages 31–45 (Mi ivm9033)  

This article is cited in 2 scientific papers (total in 2 papers)

Group-theoretic matching of the length principle and equality principle in geometry

S. E. Samokhvalov, E. B. Balakireva

Chair of Applied Mathematics, Dneprodzerzhinsk State Technical University, 2 Dneprostroevskaya str., Dneprodzerzhinsk, 51918 Ukraine
Full-text PDF (240 kB) Citations (2)
References:
Abstract: The paper deals with canonical deformed group of diffeomorphisms with a given length scale which describes the motion of the single scales in the Riemannian space. This allows to measure lengths of arbitrary curves, implementing length principle which is laid by B. Riemann in the basis of the geometry. We present the way of univocal extension of the given group to a group, which contains gauge rotations of vectors (parallel transports group) whose transformations leave unchanged the lengths of the vectors and corners between them. Thereby Klein's Erlanger Program – the principle of equality – is implemented for Riemannian spaces.
Keywords: Riemannian–Klein's antagonism, group of motions in the Riemannian space tangent bundle, canonical deformed group of diffeomorphisms.
Received: 10.09.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, Volume 59, Issue 9, Pages 26–37
DOI: https://doi.org/10.3103/S1066369X15090042
Bibliographic databases:
Document Type: Article
UDC: 515.174
Language: Russian
Citation: S. E. Samokhvalov, E. B. Balakireva, “Group-theoretic matching of the length principle and equality principle in geometry”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 9, 31–45; Russian Math. (Iz. VUZ), 59:9 (2015), 26–37
Citation in format AMSBIB
\Bibitem{SamBal15}
\by S.~E.~Samokhvalov, E.~B.~Balakireva
\paper Group-theoretic matching of the length principle and equality principle in geometry
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2015
\issue 9
\pages 31--45
\mathnet{http://mi.mathnet.ru/ivm9033}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2015
\vol 59
\issue 9
\pages 26--37
\crossref{https://doi.org/10.3103/S1066369X15090042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943229705}
Linking options:
  • https://www.mathnet.ru/eng/ivm9033
  • https://www.mathnet.ru/eng/ivm/y2015/i9/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :37
    References:43
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024