Abstract:
For a degenerate hyperbolic equation we study a problem with fractional integro-differentiation operators in the boundary condition on the characteristic part of the boundary. We determine intervals of variation of parameters of generalized operators of an arbitrary order with the Gauss hypergeometric function with which the problem is either uniquely solvable or has more than one solution.
Keywords:
Riemann–Liouville integral and derivative of a fractional order, Volterra and Abel integral equations, Gauss hypergeometric function, resolvent of the kernel.
Citation:
O. A. Repin, S. K. Kumykova, “A problem with generalized fractional integro-differentiation operator of an arbitrary order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 12, 59–71; Russian Math. (Iz. VUZ), 56:12 (2012), 50–60
\Bibitem{RepKum12}
\by O.~A.~Repin, S.~K.~Kumykova
\paper A problem with generalized fractional integro-differentiation operator of an arbitrary order
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 12
\pages 59--71
\mathnet{http://mi.mathnet.ru/ivm8759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137110}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 12
\pages 50--60
\crossref{https://doi.org/10.3103/S1066369X12120067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872236059}
Linking options:
https://www.mathnet.ru/eng/ivm8759
https://www.mathnet.ru/eng/ivm/y2012/i12/p59
This publication is cited in the following 3 articles:
O. A. Repin, S. K. Kumykova, “Nelokalnaya zadacha dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2017, no. 7, 50–56
O. A. Repin, S. K. Kumykova, “On the solvability of nonlocal problem for a hyperbolic equation of the second kind”, Russian Math. (Iz. VUZ), 60:9 (2016), 46–52
O. A. Repin, S. K. Kumykova, “Ob odnom klasse nelokalnykh zadach dlya giperbolicheskogo uravneniya s vyrozhdeniem tipa i poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 4(37) (2014), 22–32