Processing math: 100%
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 12, Pages 51–58 (Mi ivm8758)  

This article is cited in 9 scientific papers (total in 9 papers)

A Stinespring type representation for operators in Hilbert modules over local C-algebras

I. N. Malieva, M. A. Plievb

a Chair of Theoretical and Mathematical Physics, North Osetian State University, Vladikavkaz, Russia
b Southern Mathematical Institute of Russian Academy of Sciences, Vladikavkaz, Russia
Full-text PDF (194 kB) Citations (9)
References:
Abstract: We prove an analog of the Stinespring theorem for Hilbert modules over local C-algebras.
Keywords: Hilbert modules, local C-algebras, local Hilbert spaces, ()-homomorphisms, completely positive maps.
Received: 03.11.2011
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 12, Pages 43–49
DOI: https://doi.org/10.3103/S1066369X12120055
Bibliographic databases:
Document Type: Article
UDC: 517.982+519.46
Language: Russian
Citation: I. N. Maliev, M. A. Pliev, “A Stinespring type representation for operators in Hilbert modules over local C-algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 12, 51–58; Russian Math. (Iz. VUZ), 56:12 (2012), 43–49
Citation in format AMSBIB
\Bibitem{MalPli12}
\by I.~N.~Maliev, M.~A.~Pliev
\paper A Stinespring type representation for operators in Hilbert modules over local $C^\star$-algebras
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 12
\pages 51--58
\mathnet{http://mi.mathnet.ru/ivm8758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137109}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 12
\pages 43--49
\crossref{https://doi.org/10.3103/S1066369X12120055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872222858}
Linking options:
  • https://www.mathnet.ru/eng/ivm8758
  • https://www.mathnet.ru/eng/ivm/y2012/i12/p51
  • This publication is cited in the following 9 articles:
    1. Bhumi Amin, Ramesh Golla, “Completely positive maps: pro-C-algebras and Hilbert modules over pro-C-algebras”, Positivity, 28:5 (2024)  crossref
    2. Bhat B.V.R., Ghatak A., Pamula S.K., “Stinespring'S Theorem For Unbounded Operator Valued Local Completely Positive Maps and Its Applications”, Indag. Math.-New Ser., 32:2 (2021), 547–578  crossref  mathscinet  isi  scopus
    3. Joita M., “Unbounded Local Completely Positive Maps of Local Order Zero”, Positivity, 25:3 (2021), 1215–1227  crossref  mathscinet  isi  scopus
    4. A. V. Kalinichenko, M. A. Pliev, “The triangle equality in Hilbert A-modules”, Russian Math. (Iz. VUZ), 63:10 (2019), 33–39  mathnet  crossref  crossref  isi
    5. Ya. V. Elsaev, “O dilatatsii odnogo klassa vpolne polozhitelnykh otobrazhenii”, Vestnik rossiiskikh universitetov. Matematika, 24:127 (2019), 333–339  mathnet  crossref
    6. A. V. Kalinichenko, I. N. Maliev, M. A. Pliev, “Modular sesquilinear forms and generalized Stinspring representation”, Russian Math. (Iz. VUZ), 62:12 (2018), 42–49  mathnet  crossref  isi
    7. M. S. Moslehian, A. Kusraev, M. Pliev, “Matrix KSGNS construction and a Radon-Nikodym type theorem”, Indag. Math.-New Ser., 28:5 (2017), 938–952  crossref  mathscinet  zmath  isi  scopus
    8. Kh. Karimi, K. Sharifi, “Completely positive maps on Hilbert modules over pro-C -algebras”, Bull. Math. Soc. Sci. Math. Roum., 60:2 (2017), 181–193  mathscinet  zmath  isi
    9. M. A. Pliev, I. D. Tsopanov, “On representation of Stinespring's type for n-tuple completely positive maps in Hilbert C-modules”, Russian Math. (Iz. VUZ), 58:11 (2014), 36–42  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :54
    References:50
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025