Abstract:
In this paper we reduce a quadratic-linear bilevel optimization problem with a guaranteed solution to a family of bilevel problems in the optimistic statement. Then we reduce the obtained bilevel problems to nonconvex one-level optimization problems for solving the latter by nonconvex optimization methods.
Citation:
A. V. Malyshev, A. S. Strekalovsky, “Connection of some bilevel and nonlinear optimization problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4, 99–103; Russian Math. (Iz. VUZ), 55:4 (2011), 83–86
This publication is cited in the following 7 articles:
Piotr Alawdin, Krystyna Urbańska, “Limit Analysis of Geometrically Hardening Composite Steel-Concrete Systems / Stany Graniczne Geometrycznie Wzmacniających Siȩ Konstrukcji Zespolonych”, Civil and Environmental Engineering Reports, 16:1 (2023), 5
A. V. Orlov, A. V. Malyshev, “The test problem generation for quadratic-linear pessimistic bilevel optimization”, Num. Anal. Appl., 7:3 (2014), 204–214
Alexander S. Strekalovsky, Optimization in Science and Engineering, 2014, 465
Wiesemann W., Tsoukalas A., Kleniati P.-M., Rustem B., “Pessimistic Bilevel Optimization”, SIAM J. Optim., 23:1 (2013), 353–380
Aliawdin P. Urbanska K., “Limit Analysis of Geometrically Hardening Rod Systems Using Bilevel Programming”, Modern Building Materials, Structures and Techniques, Procedia Engineering, 57, ed. Juozapaitis A. Vainiunas P. Zavadskas E., Elsevier Science BV, 2013, 89–98
A. V. Malyshev, A. S. Strekalovskii, “Globalnyi poisk garantirovannykh reshenii v kvadratichno-lineinykh zadachakh dvukhurovnevoi optimizatsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 4:1 (2011), 73–82