Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, Number 4, Pages 89–98 (Mi ivm7293)  

This article is cited in 1 scientific paper (total in 1 paper)

Nearly Kähler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order 6

A. S. Samsonov

Chair of Geometry, Topology and Mathematics Teaching Pronciples, Belarussian State University, Minsk, Belarus
Full-text PDF (226 kB) Citations (1)
References:
Abstract: In this paper we consider the canonical $f$-structures on arbitrary naturally reductive homogeneous $\Phi$-spaces of order 6. We obtain the necessary and sufficient conditions under which these structures belong to classes of a generalized Hermitian geometry such as nearly Kähler and Hermitian $f$-structures.
Keywords: naturally reductive space, invariant $f$-structure, generalized Hermitian geometry, homogeneous periodic $\Phi$-space, generalized symmetric space, canonical $f$-structure.
Received: 29.10.2009
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, Volume 55, Issue 4, Pages 74–82
DOI: https://doi.org/10.3103/S1066369X11040098
Bibliographic databases:
Document Type: Article
UDC: 514.765
Language: Russian
Citation: A. S. Samsonov, “Nearly Kähler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order 6”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4, 89–98; Russian Math. (Iz. VUZ), 55:4 (2011), 74–82
Citation in format AMSBIB
\Bibitem{Sam11}
\by A.~S.~Samsonov
\paper Nearly K\"ahler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order~6
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2011
\issue 4
\pages 89--98
\mathnet{http://mi.mathnet.ru/ivm7293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2919799}
\elib{https://elibrary.ru/item.asp?id=15566444}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2011
\vol 55
\issue 4
\pages 74--82
\crossref{https://doi.org/10.3103/S1066369X11040098}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958739603}
Linking options:
  • https://www.mathnet.ru/eng/ivm7293
  • https://www.mathnet.ru/eng/ivm/y2011/i4/p89
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025