Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, Number 4 , Pages 89–98
(Mi ivm7293)
This article is cited in 1 scientific paper (total in 1 paper)
Nearly Kähler and Hermitian $f$ -structures on homogeneous $\Phi$ -spaces of order 6
A. S. Samsonov Chair of Geometry, Topology and Mathematics Teaching Pronciples,
Belarussian State University, Minsk, Belarus
Abstract:
In this paper we consider the canonical $f$ -structures on arbitrary naturally reductive homogeneous $\Phi$ -spaces of order 6. We obtain the necessary and sufficient conditions under which these structures belong to classes of a generalized Hermitian geometry such as nearly Kähler and Hermitian $f$ -structures.
Keywords:
naturally reductive space, invariant $f$ -structure, generalized Hermitian geometry, homogeneous periodic $\Phi$ -space, generalized symmetric space, canonical $f$ -structure.
Received: 29.10.2009
Citation:
A. S. Samsonov, “Nearly Kähler and Hermitian $f$ -structures on homogeneous $\Phi$ -spaces of order 6”, Izv. Vyssh. Uchebn. Zaved. Mat. , 2011, no. 4, 89–98 ; Russian Math. (Iz. VUZ) , 55 :4 (2011), 74–82
Linking options:
https://www.mathnet.ru/eng/ivm7293 https://www.mathnet.ru/eng/ivm/y2011/i4/p89
1
CITATION
1
Total citation
0
Recent citations
0.47
Field Citation Ratio
n/a
Relative Citation Ratio
Statistics & downloads :
Abstract page: 349 Full-text PDF : 82 References: 65 First page: 6