Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 38–47 (Mi ivm1276)  

This article is cited in 7 scientific papers (total in 7 papers)

The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients

M. I. Dyachenko

Moscow State University
Full-text PDF (180 kB) Citations (7)
References:
Abstract: Earlier we introduced a continuous scale of monotony for sequences (classes $M_\alpha$, $\alpha\ge 0$), where, for example, $M_0$ is the set of all nonnegative vanishing sequences, $M_1$ is the class of all nonincreasing sequences, tending to zero, etc. In addition, we extended several results obtained for trigonometric series with monotone convex coefficients onto more general classes.
The main result of this paper is a generalization of the well-known Hardy–Littlewood theorem for trigonometric series, whose coefficients belong to classes $M_\alpha$, where $\alpha\in(\frac12,1)$. Namely, the following assertion is true.
Let $\alpha\in(\frac12,1)$, $\frac1\alpha<p<2$, a sequence $\mathbf a\in M_\alpha$ and $\sum\limits_{n=1}^\infty a_n^p n^{p-2}<\infty$. Then the series $\frac{a_0}2+\sum\limits_{n=1}^\infty a_n\cos nx$ converges on $(0,2\pi)$ to a finite function $f(x)$ and $f(x)\in L_p(0,2\pi)$.
Keywords: Fourier series, generalized monotone coefficients, the Hardy–Littlewood theorem.
Received: 19.09.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 5, Pages 32–40
DOI: https://doi.org/10.3103/S1066369X08050046
Bibliographic databases:
UDC: 517.52
Language: Russian
Citation: M. I. Dyachenko, “The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 38–47; Russian Math. (Iz. VUZ), 52:5 (2008), 32–40
Citation in format AMSBIB
\Bibitem{Dya08}
\by M.~I.~Dyachenko
\paper The Hardy--Littlewood theorem for trigonometric series with generalized monotone coefficients
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 5
\pages 38--47
\mathnet{http://mi.mathnet.ru/ivm1276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445182}
\zmath{https://zbmath.org/?q=an:1157.42302}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 5
\pages 32--40
\crossref{https://doi.org/10.3103/S1066369X08050046}
Linking options:
  • https://www.mathnet.ru/eng/ivm1276
  • https://www.mathnet.ru/eng/ivm/y2008/i5/p38
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:714
    Full-text PDF :266
    References:97
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024