Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 48–54 (Mi ivm1277)  

Bases of rearrangement-invariant spaces

Kazaros Kazariana, E. M. Semenovb, S. N. Uksusovb

a Depto de Matematicas, Universidad Autonoma de Madrid, Madrid, Spain
b Chair of Theory of Functions and Geometry, Mathematical Faculty, Voronezh State University
References:
Abstract: We prove that if $E$ is a permutation-invariant space, then a boundedly complete basis exists in $E$, if and only if one of the following conditions holds: 1) $E$ is maximal and $E \ne L_1[0,1]$; 2) a certain (any) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a boundedly complete basis in $E$. As a corollary, we state the following assertion: any (certain) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a spanning basis in a separable permutation-invariant space $E$, if and only if the adjoint space $E^*$ is separable. We prove that in any separable permutation-invariant space $E$ the Haar system either forms an unconditional basis, or a strongly conditional one. The Haar system represents a strongly conditional basis in a separable permutation-invariant space, if and only if at least one of the Boyd indices of this space is trivial.
Keywords: permutation-invariant spaces, the Haar system, boundedly complete bases, an unconditional basis, a strongly conditional basis, a spanning basis.
Received: 17.04.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 5, Pages 41–46
DOI: https://doi.org/10.3103/S1066369X08050058
Bibliographic databases:
UDC: 517.592
Language: Russian
Citation: Kazaros Kazarian, E. M. Semenov, S. N. Uksusov, “Bases of rearrangement-invariant spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 48–54; Russian Math. (Iz. VUZ), 52:5 (2008), 41–46
Citation in format AMSBIB
\Bibitem{KazSemUks08}
\by Kazaros Kazarian, E.~M.~Semenov, S.~N.~Uksusov
\paper Bases of rearrangement-invariant spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 5
\pages 48--54
\mathnet{http://mi.mathnet.ru/ivm1277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445183}
\zmath{https://zbmath.org/?q=an:1157.42309}
\elib{https://elibrary.ru/item.asp?id=11034933}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 5
\pages 41--46
\crossref{https://doi.org/10.3103/S1066369X08050058}
Linking options:
  • https://www.mathnet.ru/eng/ivm1277
  • https://www.mathnet.ru/eng/ivm/y2008/i5/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :132
    References:73
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024