|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 48–54
(Mi ivm1277)
|
|
|
|
Bases of rearrangement-invariant spaces
Kazaros Kazariana, E. M. Semenovb, S. N. Uksusovb a Depto de Matematicas, Universidad Autonoma de Madrid, Madrid, Spain
b Chair of Theory of Functions and Geometry, Mathematical Faculty, Voronezh State University
Abstract:
We prove that if $E$ is a permutation-invariant space, then a boundedly complete basis exists in $E$, if and only if one of the following conditions holds: 1) $E$ is maximal and $E \ne L_1[0,1]$; 2) a certain (any) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a boundedly complete basis in $E$. As a corollary, we state the following assertion: any (certain) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a spanning basis in a separable permutation-invariant space $E$, if and only if the adjoint space $E^*$ is separable. We prove that in any separable permutation-invariant space $E$ the Haar system either forms an unconditional basis, or a strongly conditional one. The Haar system represents a strongly conditional basis in a separable permutation-invariant space, if and only if at least one of the Boyd indices of this space is trivial.
Keywords:
permutation-invariant spaces, the Haar system, boundedly complete bases, an unconditional basis, a strongly conditional basis, a spanning basis.
Received: 17.04.2007
Citation:
Kazaros Kazarian, E. M. Semenov, S. N. Uksusov, “Bases of rearrangement-invariant spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 48–54; Russian Math. (Iz. VUZ), 52:5 (2008), 41–46
Linking options:
https://www.mathnet.ru/eng/ivm1277 https://www.mathnet.ru/eng/ivm/y2008/i5/p48
|
Statistics & downloads: |
Abstract page: | 466 | Full-text PDF : | 132 | References: | 73 | First page: | 2 |
|