Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 11, Pages 35–50
DOI: https://doi.org/10.26907/0021-3446-2024-11-35-50
(Mi ivm10033)
 

Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them

M. G. Magomed-Kasumovab

a Daghestan Federal Research Centre of the Russian Academy of Science, 45 M. Gadjiev str., Makhachkala, 367000 Russia
b Southern Mathematical Institute – the Affiliate of Vladikavkaz Scientific Center of Russian Academy of Science, 53 Vatutin str., Vladikavkaz, 362027 Russia
References:
Abstract: We consider the properties of systems $\Phi_1$ orthogonal with respect to a weighted discrete-continuous Sobolev inner product of the form $\langle f,g \rangle_S = f(a)g(a)+f(b)g(b)+\displaystyle\int_a^b f'(t)g'(t)w(t)dt$. The completeness of systems $\Phi_1$ in the Sobolev space $W^1_{L^2_w}$ and the relation of $\Phi_1$ to systems orthogonal in weighted Lebesgue spaces $L^2_u$ are studied. We also analyze properties of the Fourier series with respect to systems $\Phi_1$. In particular, conditions for the uniform convergence of Fourier series to functions from $W^1_{L^2}$ are obtained.
Keywords: discrete-continuous inner product, Sobolev inner product, Fourier series, uniform convergence, coincidence at the ends of the segment, completeness of Sobolev systems.
Received: 17.12.2023
Revised: 27.02.2024
Accepted: 20.03.2024
Document Type: Article
UDC: 517.538
Language: Russian
Citation: M. G. Magomed-Kasumov, “Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 11, 35–50
Citation in format AMSBIB
\Bibitem{Mag24}
\by M.~G.~Magomed-Kasumov
\paper Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 11
\pages 35--50
\mathnet{http://mi.mathnet.ru/ivm10033}
\crossref{https://doi.org/10.26907/0021-3446-2024-11-35-50}
Linking options:
  • https://www.mathnet.ru/eng/ivm10033
  • https://www.mathnet.ru/eng/ivm/y2024/i11/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:18
    Full-text PDF :1
    References:3
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024