Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 11, Pages 23–34
DOI: https://doi.org/10.26907/0021-3446-2024-11-23-34
(Mi ivm10032)
 

On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient

E. J. Ibadov

Azerbaijan State Pedagogical University Baku, 68 Uzeyir Hajibeyov str., Baku, AZ1000 Republic of Azerbaijan
References:
Abstract: We consider a Dirac-type operator of $2m$th order on a finite interval $G=(a,b).$ It is assumed that its coefficient is a complex-valued matrix function summable on $G=(a,b)$. A Riesz property criterion is established for a system of root vector functions, and a theorem on the equivalent basis property in $L_{p}^{2m} (G), \ 1<p<\infty $ is proved.
Keywords: operator of Dirac-type, root vector function, Riesz inequality, equivalent basis property.
Received: 30.12.2023
Revised: 05.05.2024
Accepted: 26.06.2024
Document Type: Article
UDC: 517
Language: Russian
Citation: E. J. Ibadov, “On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 11, 23–34
Citation in format AMSBIB
\Bibitem{Iba24}
\by E.~J.~Ibadov
\paper On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 11
\pages 23--34
\mathnet{http://mi.mathnet.ru/ivm10032}
\crossref{https://doi.org/10.26907/0021-3446-2024-11-23-34}
Linking options:
  • https://www.mathnet.ru/eng/ivm10032
  • https://www.mathnet.ru/eng/ivm/y2024/i11/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :2
    References:10
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024