|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 136, Pages 72–102
(Mi into200)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Lie superalgebras and Calogero–Moser–Sutherland systems
A. N. Sergeevab a National Research University "Higher School of Economics" (HSE), Moscow
b Saratov State University
Abstract:
We review recent results obtained at the intersection of the theory of quantum deformed Calogero–Moser–Sutherland systems and the theory of Lie superalgebras. We begin with a definition of admissible deformations of root systems of basic classical Lie superalgebras. For classical series, we prove the existence of Lax pairs. Connections between infinite-dimensional Calogero–Moser–Sutherland systems, deformed quantum CMS systems, and representation theory of Lie superalgebras are discussed.
Keywords:
quantum Calogero–Moser–Sutherland system, Lax pair, Lie superalgebra, symmetric function, Euler character, Grothendieck ring.
Citation:
A. N. Sergeev, “Lie superalgebras and Calogero–Moser–Sutherland systems”, Proceedings of the Seminar on algebra and geometry of the Samara University, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 136, VINITI, Moscow, 2017, 72–102; J. Math. Sci. (N. Y.), 235:6 (2018), 756–787
Linking options:
https://www.mathnet.ru/eng/into200 https://www.mathnet.ru/eng/into/v136/p72
|
Statistics & downloads: |
Abstract page: | 290 | Full-text PDF : | 133 | First page: | 11 |
|