Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 136, Pages 56–71 (Mi into199)  

This article is cited in 1 scientific paper (total in 1 paper)

Games with ordered outcomes

V. V. Rozen

Saratov State University
Full-text PDF (296 kB) Citations (1)
Abstract: We present a brief review of the most important concepts and results concerning the games in which the goal structure is formalized by binary relations called preference relations. The main part of the work is devoted to games with ordered outcomes, i.e., game-theoretic models where preference relations of players are given by partial orders on the set of outcomes. We discuss both antagonistic games and $n$-person games with ordered outcomes. Optimal solutions in games with ordered outcomes are strategies of players, situations, or outcomes of the game. In the paper, we consider noncooperative and certain cooperative solutions. The special attention is paid to an extension of the order on the set of probabilistic measures since this question is substantial for constructing the mixed extension of the game with ordered outcomes. The review covers works published since 1953 until now.
Keywords: game with ordered outcomes, optimal strategy, equilibrium point, acceptable outcome, extension of the order on the set of probabilistic measures.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 235, Issue 6, Pages 740–755
DOI: https://doi.org/10.1007/s10958-018-4091-7
Bibliographic databases:
Document Type: Article
UDC: 519.83
MSC: 91A40
Language: Russian
Citation: V. V. Rozen, “Games with ordered outcomes”, Proceedings of the Seminar on algebra and geometry of the Samara University, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 136, VINITI, Moscow, 2017, 56–71; J. Math. Sci. (N. Y.), 235:6 (2018), 740–755
Citation in format AMSBIB
\Bibitem{Roz17}
\by V.~V.~Rozen
\paper Games with ordered outcomes
\inbook Proceedings of the Seminar on algebra and geometry of the Samara University
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 136
\pages 56--71
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3808187}
\zmath{https://zbmath.org/?q=an:1419.91026}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 235
\issue 6
\pages 740--755
\crossref{https://doi.org/10.1007/s10958-018-4091-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055754753}
Linking options:
  • https://www.mathnet.ru/eng/into199
  • https://www.mathnet.ru/eng/into/v136/p56
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :138
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024