Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 134, Pages 6–128 (Mi into194)  

This article is cited in 6 scientific papers (total in 6 papers)

Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part 1

M. V. Shamolin

Lomonosov Moscow State University, Institute of Mechanics
Abstract: In this review, we discuss new cases of integrable systems on the tangent bundles of finite-dimensional spheres. Such systems appear in the dynamics of multidimensional rigid bodies in nonconservative fields. These problems are described by systems with variable dissipation with zero mean. We found several new cases of integrability of equations of motion in terms of transcendental functions (in the sense of the classification of singularities) that can be expressed as finite combinations of elementary functions.
Keywords: fixed rigid body, pendulum, multi-dimensional body, integrable system, variable dissipation system, transcendental first integral.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 233, Issue 2, Pages 173–299
DOI: https://doi.org/10.1007/s10958-018-3933-7
Bibliographic databases:
Document Type: Article
UDC: 517.9+531.01
MSC: 34Cxx, 37E10, 37N05
Language: Russian
Citation: M. V. Shamolin, “Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part 1”, Dynamical systems, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 134, VINITI, Moscow, 2017, 6–128; J. Math. Sci. (N. Y.), 233:2 (2018), 173–299
Citation in format AMSBIB
\Bibitem{Sha17}
\by M.~V.~Shamolin
\paper Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~1
\inbook Dynamical systems
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 134
\pages 6--128
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799506}
\zmath{https://zbmath.org/?q=an:06945089}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 233
\issue 2
\pages 173--299
\crossref{https://doi.org/10.1007/s10958-018-3933-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049677792}
Linking options:
  • https://www.mathnet.ru/eng/into194
  • https://www.mathnet.ru/eng/into/v134/p6
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025