Abstract:
A number of results presently available in the theory of p/d operators with complex arguments is systematically presented in the survey, and their applications to partial differential equations are given.
Citation:
Yu. A. Dubinskii, “Algebra of pseudodifferential operators with complex arguments, and its applications”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 29, VINITI, Moscow, 1986, 109–150; J. Soviet Math., 39:3 (1987), 2746–2772
\Bibitem{Dub86}
\by Yu.~A.~Dubinskii
\paper Algebra of pseudodifferential operators with complex arguments, and its applications
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1986
\vol 29
\pages 109--150
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=892744}
\zmath{https://zbmath.org/?q=an:0659.35110}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 39
\issue 3
\pages 2746--2772
\crossref{https://doi.org/10.1007/BF01127036}
Linking options:
https://www.mathnet.ru/eng/intd95
https://www.mathnet.ru/eng/intd/v29/p109
This publication is cited in the following 6 articles:
O. V. Odinokov, “Spectral synthesis in certain spaces of entire functions of exponential type and its applications”, Izv. Math., 64:4 (2000), 777–786
O. V. Odinokov, “Integral representation of entire functions and differential operators of infinite order”, Izv. Math., 59:4 (1995), 839–846
O. V. Odinokov, “Differential operators of infinite order in some spaces of entire functions”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 347–361
O. V. Odinokov, “Differential operators of infinite order with symbols of Gevrey class”, Math. USSR-Izv., 39:2 (1992), 1085–1096
Yu. A. Dubinskii, “The Cauchy problem and pseudodifferential operators in the complex domain”, Russian Math. Surveys, 45:2 (1990), 95–128
B. Yu. Sternin, V. E. Shatalov, “Differential equations on complex-analytic manifolds, and the Maslov canonical operator”, Russian Math. Surveys, 43:3 (1988), 117–148