Abstract:
A survey is given of various methods of integrating Hamiltonian systems on symmetric spaces and Lie algebras, and an analysis is also presented of applications of the technique developed to some mechanical problems. Some questions of nonintegrability of Hamiltonian systems on symplectic manifolds are considered, and, in particular, the Morse theory of completely integrable Hamiltonian systems is expounded.
Citation:
V. V. Trofimov, A. T. Fomenko, “The geometry of Poisson brackets and methods for integration, in the sense of Liouville, of systems on symmetric spaces”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 29, VINITI, Moscow, 1986, 3–108; J. Soviet Math., 39:3 (1987), 2683–2746
\Bibitem{TroFom86}
\by V.~V.~Trofimov, A.~T.~Fomenko
\paper The geometry of Poisson brackets and methods for integration, in the sense of Liouville, of systems on symmetric spaces
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1986
\vol 29
\pages 3--108
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd94}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=892743}
\zmath{https://zbmath.org/?q=an:0664.58013}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 39
\issue 3
\pages 2683--2746
\crossref{https://doi.org/10.1007/BF01127019}
Linking options:
https://www.mathnet.ru/eng/intd94
https://www.mathnet.ru/eng/intd/v29/p3
This publication is cited in the following 12 articles:
Anthony M. Bloch, Francois Gay-Balmaz, Tudor S. Ratiu, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2013, 1567
Elfi Kraka, “Reaction path Hamiltonian and the unified reaction valley approach”, WIREs Comput Mol Sci, 1:4 (2011), 531
V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530
A. S. Vorontsov, “Invariants of Lie algebras representable as semidirect sums with a commutative ideal”, Sb. Math., 200:8 (2009), 1149–1164
D. V. Georgievskii, M. V. Shamolin, “Valerii Vladimirovich Trofimov”, Journal of Mathematical Sciences, 154:4 (2008), 449–461
M. V. Shamolin, “An integrable case of dynamical equations on $so(4)\times\mathbb R^4$”, Russian Math. Surveys, 60:6 (2005), 1245–1246
T. A. Ivanova, A. D. Popov, “Self-dual Yang–Mills fields in $d=4$ and integrable systems in $1\leq d\leq 3$”, Theoret. and Math. Phys., 102:3 (1995), 280–304
A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219
S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336
A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412
Yu. M. Vorob'ev, M. V. Karasev, “Poisson manifolds and the schouten bracket”, Funct. Anal. Appl., 22:1 (1988), 1–9
A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383