Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1986, Volume 29, Pages 3–108 (Mi intd94)  

This article is cited in 12 scientific papers (total in 12 papers)

The geometry of Poisson brackets and methods for integration, in the sense of Liouville, of systems on symmetric spaces

V. V. Trofimov, A. T. Fomenko
Abstract: A survey is given of various methods of integrating Hamiltonian systems on symmetric spaces and Lie algebras, and an analysis is also presented of applications of the technique developed to some mechanical problems. Some questions of nonintegrability of Hamiltonian systems on symplectic manifolds are considered, and, in particular, the Morse theory of completely integrable Hamiltonian systems is expounded.
English version:
Journal of Soviet Mathematics, 1987, Volume 39, Issue 3, Pages 2683–2746
DOI: https://doi.org/10.1007/BF01127019
Bibliographic databases:
Document Type: Article
UDC: 514.765+515.164.174+517.913
Language: Russian
Citation: V. V. Trofimov, A. T. Fomenko, “The geometry of Poisson brackets and methods for integration, in the sense of Liouville, of systems on symmetric spaces”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 29, VINITI, Moscow, 1986, 3–108; J. Soviet Math., 39:3 (1987), 2683–2746
Citation in format AMSBIB
\Bibitem{TroFom86}
\by V.~V.~Trofimov, A.~T.~Fomenko
\paper The geometry of Poisson brackets and methods for integration, in the sense of Liouville, of systems on symmetric spaces
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1986
\vol 29
\pages 3--108
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd94}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=892743}
\zmath{https://zbmath.org/?q=an:0664.58013}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 39
\issue 3
\pages 2683--2746
\crossref{https://doi.org/10.1007/BF01127019}
Linking options:
  • https://www.mathnet.ru/eng/intd94
  • https://www.mathnet.ru/eng/intd/v29/p3
  • This publication is cited in the following 12 articles:
    1. Anthony M. Bloch, Francois Gay-Balmaz, Tudor S. Ratiu, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2013, 1567  crossref
    2. Elfi Kraka, “Reaction path Hamiltonian and the unified reaction valley approach”, WIREs Comput Mol Sci, 1:4 (2011), 531  crossref
    3. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
    4. A. S. Vorontsov, “Invariants of Lie algebras representable as semidirect sums with a commutative ideal”, Sb. Math., 200:8 (2009), 1149–1164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. D. V. Georgievskii, M. V. Shamolin, “Valerii Vladimirovich Trofimov”, Journal of Mathematical Sciences, 154:4 (2008), 449–461  mathnet  crossref  mathscinet  zmath
    6. M. V. Shamolin, “An integrable case of dynamical equations on $so(4)\times\mathbb R^4$”, Russian Math. Surveys, 60:6 (2005), 1245–1246  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. T. A. Ivanova, A. D. Popov, “Self-dual Yang–Mills fields in $d=4$ and integrable systems in $1\leq d\leq 3$”, Theoret. and Math. Phys., 102:3 (1995), 280–304  mathnet  crossref  mathscinet  zmath  isi
    8. A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336  mathnet  crossref  mathscinet  zmath
    10. A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412  mathnet  crossref  mathscinet  zmath
    11. Yu. M. Vorob'ev, M. V. Karasev, “Poisson manifolds and the schouten bracket”, Funct. Anal. Appl., 22:1 (1988), 1–9  mathnet  crossref  mathscinet  zmath  isi
    12. A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:679
    Full-text PDF :634
    References:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025