Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1986, Volume 28, Pages 207–313 (Mi intd93)  

This article is cited in 11 scientific papers (total in 11 papers)

On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point

T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii
Abstract: The theory of reaction-diffusion systems in a neighborhood of a bifurcation point is considered. The basic types of space-time ordering, diffusion chaos in such systems, and sequences of bifurcations leading to complication of solutions are studied. A detailed discussion is given of a hierarchy of simplified models (one- and two-dimensional mappings, systems of ordinary differential equations, and others) which make it possible to carry out a qualitative analysis of the problem studied in the case of small regions. A number of generalizations of the equations studied and the simplest types of ordering in the two-dimensional case are described.
English version:
Journal of Soviet Mathematics, 1988, Volume 41, Issue 5, Pages 1292–1356
DOI: https://doi.org/10.1007/BF01098786
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, “On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 28, VINITI, Moscow, 1986, 207–313; J. Soviet Math., 41:5 (1988), 1292–1356
Citation in format AMSBIB
\Bibitem{AkhKurMal86}
\by T.~S.~Akhromeeva, S.~P.~Kurdyumov, G.~G.~Malinetskii, A.~A.~Samarskii
\paper On the classification of the solutions of a~system of nonlinear diffusion equations in a~neighborhood of a~bifurcation point
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1986
\vol 28
\pages 207--313
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd93}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=894260}
\zmath{https://zbmath.org/?q=an:0635.35007|0699.35017}
\transl
\jour J. Soviet Math.
\yr 1988
\vol 41
\issue 5
\pages 1292--1356
\crossref{https://doi.org/10.1007/BF01098786}
Linking options:
  • https://www.mathnet.ru/eng/intd93
  • https://www.mathnet.ru/eng/intd/v28/p207
  • This publication is cited in the following 11 articles:
    1. S. D. Glyzin, “Raznostnye approksimatsii uravneniya «reaktsiya–diffuziya» na otrezke”, Model. i analiz inform. sistem, 16:3 (2009), 96–115  mathnet
    2. A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Mathematical aspects of the theory of development of turbulence in the sense of Landau”, Russian Math. Surveys, 63:2 (2008), 221–282  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. D. S. Kaschenko, I. S. Kaschenko, “Dinamika parabolicheskogo uravneniya s maloi diffuziei i otkloneniem prostranstvennoi peremennoi”, Model. i analiz inform. sistem, 15:2 (2008), 89–93  mathnet
    4. A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer Phenomenon in Nonlinear Physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168  mathnet  mathscinet  zmath
    5. A. Yu. Kolesov, N. Kh. Rozov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, Theoret. and Math. Phys., 125:2 (2000), 1476–1488  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. G. G. Malinetskiǐ, A. V. Potapov, G. Z. Tsvertsvadze, “Some qualitative features of diffusion-induced chaos”, Comput. Math. Math. Phys., 34:4 (1994), 471–478  mathnet  mathscinet  zmath  isi
    7. I. D. Chueshov, “Global attractors for non-linear problems of mathematical physics”, Russian Math. Surveys, 48:3 (1993), 133–161  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. A. V. Razgulin, “Self-excited oscillations in the nonlinear parabolic problem with transformed argument”, Comput. Math. Math. Phys., 33:1 (1993), 61–70  mathnet  mathscinet  zmath  isi
    9. G. G. Malinetskii, G. Z. Tsertsvadze, “The investigation of the Lyapunov spectrum of the Kuramoto–Tsuzuki equation”, Comput. Math. Math. Phys., 33:7 (1993), 919–927  mathnet  mathscinet  zmath  isi
    10. G. Z. Tsertsvadze, “On the convergence of difference schemes for the Kuramoto–Tsuzuki equation and reaction-diffusion type systems”, U.S.S.R. Comput. Math. Math. Phys., 31:5 (1991), 40–47  mathnet  mathscinet  zmath  isi
    11. S. A. Kashchenko, “Asymptotic behaviour of rapidly oscillating contrasting spatial structures”, U.S.S.R. Comput. Math. Math. Phys., 30:1 (1990), 186–197  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:913
    Full-text PDF :527
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025