Loading [MathJax]/jax/output/CommonHTML/jax.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1986, Volume 28, Pages 95–205 (Mi intd92)  

This article is cited in 91 scientific papers (total in 91 papers)

A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures

V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Yelenin, S. P. Kurdyumov, A. A. Samarskii
Abstract: A survey is given of results of investigating unbounded solutions (regimes with peaking) of quasilinear parabolic equations of nonlinear heat conduction with a source. Principal attention is devoted to the investigation of the property of localization of regimes with peaking. A group classification of nonlinear equations of this type is carried out, properties of a broad set of invariant (self-similar) solutions are investigated, and special methods of investigating the space-time structure of unbounded solutions are developed.
English version:
Journal of Soviet Mathematics, 1988, Volume 41, Issue 5, Pages 1222–1292
DOI: https://doi.org/10.1007/BF01098785
Bibliographic databases:
UDC: 517.956.45+517.958
Language: Russian
Citation: V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Yelenin, S. P. Kurdyumov, A. A. Samarskii, “A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 28, VINITI, Moscow, 1986, 95–205; J. Soviet Math., 41:5 (1988), 1222–1292
Citation in format AMSBIB
\Bibitem{GalDorYel86}
\by V.~A.~Galaktionov, V.~A.~Dorodnitsyn, G.~G.~Yelenin, S.~P.~Kurdyumov, A.~A.~Samarskii
\paper A quasilinear equation of heat conduction with a~source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1986
\vol 28
\pages 95--205
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd92}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=894259}
\zmath{https://zbmath.org/?q=an:0654.35045|0699.35134}
\transl
\jour J. Soviet Math.
\yr 1988
\vol 41
\issue 5
\pages 1222--1292
\crossref{https://doi.org/10.1007/BF01098785}
Linking options:
  • https://www.mathnet.ru/eng/intd92
  • https://www.mathnet.ru/eng/intd/v28/p95
  • This publication is cited in the following 91 articles:
    1. A. L. Kazakov, “Resheniya c nulevym frontom dlya kvazilineinogo parabolicheskogo uravneniya teploprovodnosti”, Tr. IMM UrO RAN, 30, no. 2, 2024, 86–102  mathnet  crossref  elib
    2. Yu.A. Chirkunov, M.Yu. Chirkunov, “Invariant nonlinear heat distribution in a rod in the presence of an external nonstationary source of heating or cooling”, Chaos, Solitons & Fractals, 187 (2024), 115370  crossref
    3. S. I. Abdrakhmanov, F. S. Nasyrov, “On Nonlinear Heat-Conduction Equations with a Random Right Part”, Lobachevskii J Math, 45:6 (2024), 2641  crossref
    4. Philip Broadbridge, Bronwyn H. Bradshaw-Hajek, Ashleigh J. Hutchinson, “Conditionally integrable PDEs, non-classical symmetries and applications”, Proc. R. Soc. A., 479:2276 (2023)  crossref
    5. Scott W. McCue, Bronwyn H. Bradshaw-Hajek, Matthew J. Simpson, “Exact time-dependent solutions of a Fisher–KPP-like equation obtained with nonclassical symmetry analysis”, Applied Mathematics Letters, 132 (2022), 108151  crossref
    6. Philip Broadbridge, Joanna M. Goard, “Conditionally Integrable Nonlinear Diffusion with Diffusivity 1/u”, Symmetry, 11:6 (2019), 804  crossref
    7. Andrei D. Polyanin, “Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction–diffusion equations with variable coefficients”, International Journal of Non-Linear Mechanics, 111 (2019), 95  crossref
    8. Bronwyn Bradshaw-Hajek, “Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations”, Symmetry, 11:2 (2019), 208  crossref
    9. Bronwyn H Bradshaw-Hajek, Philip Broadbridge, “Analytic solutions for calcium ion fertilisation waves on the surface of eggs”, Mathematical Medicine and Biology: A Journal of the IMA, 36:4 (2019), 549  crossref
    10. Andrei D. Polyanin, “Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients”, Communications in Nonlinear Science and Numerical Simulation, 73 (2019), 379  crossref
    11. Irina V. Stepanova, “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Applied Mathematics and Computation, 343 (2019), 57  crossref
    12. Andrei D. Polyanin, “Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients”, Applied Mathematics and Computation, 347 (2019), 282  crossref
    13. G. A. Rudykh, E. I. Semenov, “Issledovanie sovmestnosti pereopredelennoi sistemy dlya mnogomernogo uravneniya nelineinoi teploprovodnosti”, Matematicheskie zametki SVFU, 25:1 (2018), 50–62  mathnet  crossref  elib
    14. Lina Ji, Wei Feng, “Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity”, Symmetry, 10:7 (2018), 267  crossref
    15. A. L. Grigoriev, A. A. Koroteev, A. A. Safronov, N. I. Filatov, “Self-similar patterns of subsatellites formation at the capillary breakup of viscous jets”, Thermophys. Aeromech., 25:4 (2018), 575  crossref
    16. G. A. Rudykh, E. I. Semenov, “Issledovanie sovmestnosti pereopredelennoi sistemy dlya mnogomernogo uravneniya nelineinoi teploprovodnosti (chastnyi sluchai)”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 18 (2016), 93–109  mathnet
    17. P. Broadbridge, B. H. Bradshaw-Hajek, “Exact solutions for logistic reaction–diffusion equations in biology”, Z. Angew. Math. Phys., 67:4 (2016)  crossref
    18. P. Broadbridge, B. H. Bradshaw-Hajek, D. Triadis, “Exact non-classical symmetry solutions of Arrhenius reaction–diffusion”, Proc. R. Soc. A., 471:2184 (2015), 20150580  crossref
    19. Adil Jhangeer, “Effect of background geometry on symmetries of the (1+2) -dimensional heat equation and reductions of the TDGL model”, Afr. Mat., 25:2 (2014), 323  crossref
    20. Adil Jhangeer, Sumaira Sharif, “Conserved quantities and group classification of wave equation on hyperbolic space”, Communications in Nonlinear Science and Numerical Simulation, 18:2 (2013), 236  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:1877
    Full-text PDF :1178
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025