Abstract:
A survey is given of results of investigating unbounded solutions (regimes with peaking) of quasilinear parabolic equations of nonlinear heat conduction with a source. Principal attention is devoted to the investigation of the property of localization of regimes with peaking. A group classification of nonlinear equations of this type is carried out, properties of a broad set of invariant (self-similar) solutions are investigated, and special methods of investigating the space-time structure of unbounded solutions are developed.
Citation:
V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Yelenin, S. P. Kurdyumov, A. A. Samarskii, “A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 28, VINITI, Moscow, 1986, 95–205; J. Soviet Math., 41:5 (1988), 1222–1292
This publication is cited in the following 91 articles:
A. L. Kazakov, “Resheniya c nulevym frontom dlya kvazilineinogo parabolicheskogo uravneniya teploprovodnosti”, Tr. IMM UrO RAN, 30, no. 2, 2024, 86–102
Yu.A. Chirkunov, M.Yu. Chirkunov, “Invariant nonlinear heat distribution in a rod in the presence of an external nonstationary source of heating or cooling”, Chaos, Solitons & Fractals, 187 (2024), 115370
S. I. Abdrakhmanov, F. S. Nasyrov, “On Nonlinear Heat-Conduction Equations with a Random Right Part”, Lobachevskii J Math, 45:6 (2024), 2641
Philip Broadbridge, Bronwyn H. Bradshaw-Hajek, Ashleigh J. Hutchinson, “Conditionally integrable PDEs, non-classical symmetries and applications”, Proc. R. Soc. A., 479:2276 (2023)
Scott W. McCue, Bronwyn H. Bradshaw-Hajek, Matthew J. Simpson, “Exact time-dependent solutions of a Fisher–KPP-like equation obtained with nonclassical symmetry analysis”, Applied Mathematics Letters, 132 (2022), 108151
Philip Broadbridge, Joanna M. Goard, “Conditionally Integrable Nonlinear Diffusion with Diffusivity 1/u”, Symmetry, 11:6 (2019), 804
Andrei D. Polyanin, “Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction–diffusion equations with variable coefficients”, International Journal of Non-Linear Mechanics, 111 (2019), 95
Bronwyn H Bradshaw-Hajek, Philip Broadbridge, “Analytic solutions for calcium ion fertilisation waves on the surface of eggs”, Mathematical Medicine and Biology: A Journal of the IMA, 36:4 (2019), 549
Andrei D. Polyanin, “Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients”, Communications in Nonlinear Science and Numerical Simulation, 73 (2019), 379
Irina V. Stepanova, “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Applied Mathematics and Computation, 343 (2019), 57
Andrei D. Polyanin, “Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients”, Applied Mathematics and Computation, 347 (2019), 282
G. A. Rudykh, E. I. Semenov, “Issledovanie sovmestnosti pereopredelennoi sistemy dlya mnogomernogo uravneniya nelineinoi teploprovodnosti”, Matematicheskie zametki SVFU, 25:1 (2018), 50–62
Lina Ji, Wei Feng, “Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity”, Symmetry, 10:7 (2018), 267
A. L. Grigoriev, A. A. Koroteev, A. A. Safronov, N. I. Filatov, “Self-similar patterns of subsatellites formation at the capillary breakup of viscous jets”, Thermophys. Aeromech., 25:4 (2018), 575
G. A. Rudykh, E. I. Semenov, “Issledovanie sovmestnosti pereopredelennoi sistemy dlya mnogomernogo uravneniya nelineinoi teploprovodnosti (chastnyi sluchai)”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 18 (2016), 93–109
P. Broadbridge, B. H. Bradshaw-Hajek, “Exact solutions for logistic reaction–diffusion equations in biology”, Z. Angew. Math. Phys., 67:4 (2016)
P. Broadbridge, B. H. Bradshaw-Hajek, D. Triadis, “Exact non-classical symmetry solutions of Arrhenius reaction–diffusion”, Proc. R. Soc. A., 471:2184 (2015), 20150580
Adil Jhangeer, “Effect of background geometry on symmetries of the (1+2) -dimensional heat equation and reductions of the TDGL model”, Afr. Mat., 25:2 (2014), 323
Adil Jhangeer, Sumaira Sharif, “Conserved quantities and group classification of wave equation on hyperbolic space”, Communications in Nonlinear Science and Numerical Simulation, 18:2 (2013), 236