Loading [MathJax]/jax/output/CommonHTML/jax.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", 1973, Volume 1, Pages 169–195 (Mi intd5)  

This article is cited in 3 scientific papers (total in 3 papers)

The canonical operator (the complex case)

V. P. Maslov, B. Yu. Sternin
Abstract: We present the canonic operator method for the complex case. We prove the cocyclicity of a canonic cochain and establish a fundamental theorem on commutation.
English version:
Journal of Soviet Mathematics, 1975, Volume 3, Issue 2, Pages 280–299
DOI: https://doi.org/10.1007/BF01215391
Bibliographic databases:
UDC: 517:530.14
Language: Russian
Citation: V. P. Maslov, B. Yu. Sternin, “The canonical operator (the complex case)”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 1, VINITI, Moscow, 1973, 169–195; J. Soviet Math., 3:2 (1975), 280–299
Citation in format AMSBIB
\Bibitem{MasSte73}
\by V.~P.~Maslov, B.~Yu.~Sternin
\paper The canonical operator (the complex case)
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.
\yr 1973
\vol 1
\pages 169--195
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd5}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=610623}
\zmath{https://zbmath.org/?q=an:0311.35080|0303.35070}
\transl
\jour J. Soviet Math.
\yr 1975
\vol 3
\issue 2
\pages 280--299
\crossref{https://doi.org/10.1007/BF01215391}
Linking options:
  • https://www.mathnet.ru/eng/intd5
  • https://www.mathnet.ru/eng/intd/v1/p169
  • This publication is cited in the following 3 articles:
    1. A. M. Vinogradov, I. S. Krasil'shchik, “What is the hamiltonian formalism?”, Russian Math. Surveys, 30:1 (1975), 177–202  mathnet  crossref  mathscinet  zmath
    2. V. V. Kucherenko, “The commutation formula for an h1-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case”, Math. USSR-Sb., 23:1 (1974), 85–109  mathnet  crossref  mathscinet  zmath
    3. V. V. Kucherenko, “Asymptotic solutions of equations with complex characteristics”, Math. USSR-Sb., 24:2 (1974), 159–207  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:796
    Full-text PDF :295
    References:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025