Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", 1973, Volume 1, Pages 85–167 (Mi intd4)  

This article is cited in 5 scientific papers (total in 5 papers)

The canonical operator (the real case)

V. P. Maslov, M. V. Fedoryuk
Abstract: We examine homogeneous partial differential and pseudodifferential equations containing a large parameter and the Schrцdinger and Helmholtz equations analogous to them in their properties. We present a canonic operator method which permits us to construct asymptotic solutions in the large for such classes of equations. In the paper we present as well the necessary information on analytical mechanics and on the theory of Lagrange manifolds.
English version:
Journal of Soviet Mathematics, 1975, Volume 3, Issue 2, Pages 217–279
DOI: https://doi.org/10.1007/BF01215390
Bibliographic databases:
UDC: 517:530.14
Language: Russian
Citation: V. P. Maslov, M. V. Fedoryuk, “The canonical operator (the real case)”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 1, VINITI, Moscow, 1973, 85–167; J. Soviet Math., 3:2 (1975), 217–279
Citation in format AMSBIB
\Bibitem{MasFed73}
\by V.~P.~Maslov, M.~V.~Fedoryuk
\paper The canonical operator (the real case)
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.
\yr 1973
\vol 1
\pages 85--167
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=650984}
\zmath{https://zbmath.org/?q=an:0311.35079|0303.35069}
\transl
\jour J. Soviet Math.
\yr 1975
\vol 3
\issue 2
\pages 217--279
\crossref{https://doi.org/10.1007/BF01215390}
Linking options:
  • https://www.mathnet.ru/eng/intd4
  • https://www.mathnet.ru/eng/intd/v1/p85
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:838
    Full-text PDF :388
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024