Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", 1979, Volume 13, Pages 145–267 (Mi intd37)  

This article is cited in 53 scientific papers (total in 53 papers)

Algebras with general commutation relations and their applications. II. Operator unitary-nonlinear equations

M. V. Karasev, V. P. Maslov
English version:
Journal of Soviet Mathematics, 1981, Volume 15, Issue 3, Pages 273–368
DOI: https://doi.org/10.1007/BF01083679
Bibliographic databases:
UDC: 517.984.22+517-983.53
Language: Russian
Citation: M. V. Karasev, V. P. Maslov, “Algebras with general commutation relations and their applications. II. Operator unitary-nonlinear equations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 13, VINITI, Moscow, 1979, 145–267; J. Soviet Math., 15:3 (1981), 273–368
Citation in format AMSBIB
\Bibitem{KarMas79}
\by M.~V.~Karasev, V.~P.~Maslov
\paper Algebras with general commutation relations and their applications. II.~Operator unitary-nonlinear equations
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.
\yr 1979
\vol 13
\pages 145--267
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd37}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=565188}
\zmath{https://zbmath.org/?q=an:0482.58029}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 15
\issue 3
\pages 273--368
\crossref{https://doi.org/10.1007/BF01083679}
Linking options:
  • https://www.mathnet.ru/eng/intd37
  • https://www.mathnet.ru/eng/intd/v13/p145
    Cycle of papers
    This publication is cited in the following 53 articles:
    1. A. V. Pereskokov, “Asymptotics of hypergeometric coherent states and eigenfunctions of the hydrogen atom in a magnetic field. Determination of self-consistent energy levels”, Theoret. and Math. Phys., 222:3 (2025), 453–470  mathnet  crossref  crossref
    2. A. V. Pereskokov, “Asymptotics of the Spectrum of a Hartree Type Operator with Self-Consistent Potential Including the Macdonald Function”, J Math Sci, 279:4 (2024), 508  crossref
    3. A. V. Pereskokov, “Asymptotics of the Spectrum of a Threedimensional Hartree Type Operator Near Upper Boundaries of Spectral Clusters”, J Math Sci, 281:4 (2024), 612  crossref
    4. A. V. Pereskokov, “Asymptotic Solutions to the Hartree Equation Near a Sphere. Asymptotics of Self-Consistent Potentials”, J Math Sci, 276:1 (2023), 154  crossref
    5. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum of a Two-Dimensional Hartree Type Operator Near Boundaries of Spectral Clusters”, J Math Sci, 264:5 (2022), 617  crossref
    6. Anton E. Kulagin, Alexander V. Shapovalov, Andrey Y. Trifonov, “Semiclassical Spectral Series Localized on a Curve for the Gross–Pitaevskii Equation with a Nonlocal Interaction”, Symmetry, 13:7 (2021), 1289  crossref
    7. A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste”, Theoret. and Math. Phys., 205:3 (2020), 1652–1665  mathnet  crossref  crossref  adsnasa  isi  elib
    8. Alexander V. Shapovalov, Anton E. Kulagin, Andrey Yu. Trifonov, “The Gross–Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve”, Symmetry, 12:2 (2020), 201  crossref
    9. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, Theoret. and Math. Phys., 199:3 (2019), 864–877  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. E. M. Novikova, “Algebra of Symmetries of Three-Frequency Hyperbolic Resonance”, Math. Notes, 106:6 (2019), 940–956  mathnet  mathnet  crossref  isi  scopus
    11. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 187:1 (2016), 511–524  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, Theoret. and Math. Phys., 183:1 (2015), 516–526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. Commutation Relations, Normal Ordering, and Stirling Numbers, 2015, 419  crossref
    14. J. Brüning, V. V. Grushin, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Generalized Foldy–Wouthuysen transformation and pseudodifferential operators”, Theoret. and Math. Phys., 167:2 (2011), 547–566  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    15. V. V. Grushin, S. Yu. Dobrokhotov, “Peierls Substitution and the Maslov Operator Method”, Math. Notes, 87:4 (2010), 521–536  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. M. V. Karasev, E. M. Novikova, “Algebra and quantum geometry of multifrequency resonance”, Izv. Math., 74:6 (2010), 1155–1204  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    17. J. Brüning, S. Yu. Dobrokhotov, R. V. Nekrasov, A. I. Shafarevich, “Propagation of Gaussian wave packets in thin periodic quantum waveguides with a nonlocal nonlinearity”, Theoret. and Math. Phys., 155:2 (2008), 689–707  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    18. V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    19. V. V. Belov, E. I. Smirnova, “Localized Asymptotic Solutions of the Self-Consistent Field Equation”, Math. Notes, 80:2 (2006), 296–299  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    20. V V Belov, M F Kondratieva, A Yu Trifonov, “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton–Ehrenfest system”, J. Phys. A: Math. Gen., 39:34 (2006), 10821  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:861
    Full-text PDF :527
    References:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025