Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1992, Volume 39, Issue 2, Pages 905–957
DOI: https://doi.org/10.1070/IM1992v039n02ABEH002232
(Mi im977)
 

This article is cited in 29 scientific papers (total in 30 papers)

On groups all of whose proper subgroups of which are finite cyclic

S. I. Adian, I. G. Lysenok
References:
Abstract: For any odd number n1003, the authors construct an infinite 2-generator group each of whose proper subgroups is contained in a cyclic subgroup of order n. This result strengthens analogous results of Ol'shanskii for prime n>1075 and Atabekyan and Ivanov for odd n>1080. The proof is carried out in the original language of Novikov–Adyan theory.
Received: 04.01.1991
Bibliographic databases:
Document Type: Article
UDC: 510.6
MSC: Primary 20E07, 20F05; Secondary 20E34
Language: English
Original paper language: Russian
Citation: S. I. Adian, I. G. Lysenok, “On groups all of whose proper subgroups of which are finite cyclic”, Math. USSR-Izv., 39:2 (1992), 905–957
Citation in format AMSBIB
\Bibitem{AdiLys91}
\by S.~I.~Adian, I.~G.~Lysenok
\paper On groups all of whose proper subgroups of which are finite cyclic
\jour Math. USSR-Izv.
\yr 1992
\vol 39
\issue 2
\pages 905--957
\mathnet{http://mi.mathnet.ru/eng/im977}
\crossref{https://doi.org/10.1070/IM1992v039n02ABEH002232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1149884}
\zmath{https://zbmath.org/?q=an:0771.20015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992IzMat..39..905A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JZ92300001}
Linking options:
  • https://www.mathnet.ru/eng/im977
  • https://doi.org/10.1070/IM1992v039n02ABEH002232
  • https://www.mathnet.ru/eng/im/v55/i5/p933
  • This publication is cited in the following 30 articles:
    1. Atabekyan V.S. Gevorkyan G.G., “Central Extensions of N-Torsion Groups”, J. Contemp. Math. Anal.-Armen. Aca., 57:1 (2022), 26–34  crossref  isi
    2. V. S. Atabekyan, H. T. Aslanyan, S. T. Aslanyan, “Powers of subsets in free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:2 (2022), 43–48  mathnet  crossref
    3. V. S. Atabekyan, V. G. Mikaelyan, “On the Product of Subsets in Periodic Groups”, J. Contemp. Mathemat. Anal., 57:6 (2022), 395  crossref
    4. V. S. Atabekyan, V. G. Mikaelyan, “O proizvedenii podmnozhestv v pereodicheskikh gruppakh”, Proceedings of NAS RA. Mathematics, 2022, 12  crossref
    5. V. S. Atabekyan, L. D. Beklemishev, V. S. Guba, I. G. Lysenok, A. A. Razborov, A. L. Semenov, “Questions in algebra and mathematical logic. Scientific heritage of S. I. Adian”, Russian Math. Surveys, 76:1 (2021), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. S. I. Adian, V. S. Atabekyan, “Normal Automorphisms of Free Groups of Infinitely Based Varieties”, Math. Notes, 108:2 (2020), 149–154  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. S. Atabekyan, “The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum”, Uch. zapiski EGU, ser. Fizika i Matematika, 54:2 (2020), 81–86  mathnet  crossref
    8. Adian S.I. Atabekyan V.S., “N-Torsion Groups”, J. Contemp. Math. Anal.-Armen. Aca., 54:6 (2019), 319–327  crossref  isi
    9. S. I. Adian, V. S. Atabekyan, “$C^*$-Simplicity of $n$-Periodic Products”, Math. Notes, 99:5 (2016), 631–635  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. V. S. Atabekyan, “Automorphism groups and endomorphism semigroups of groups $B(m,n)$”, Algebra and Logic, 54:1 (2015), 58–62  mathnet  crossref  crossref  mathscinet  isi
    11. S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71  mathnet  crossref  crossref  isi  elib
    12. S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of $n$-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. V. S. Atabekyan, “Splitting Automorphisms of Order $p^k$ of Free Burnside Groups are Inner”, Math. Notes, 95:5 (2014), 586–589  mathnet  crossref  crossref  mathscinet  isi  elib
    14. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Sb. Math., 204:2 (2013), 182–189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Atabekyan V.S., “The Groups of Automorphisms Are Complete for Free Burnside Groups of Odd Exponents N >= 1003”, Int. J. Algebr. Comput., 23:6 (2013), 1485–1496  crossref  isi
    16. V. S. Atabekyan, “The automorphism tower problem for free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2013, no. 2, 3–7  mathnet
    17. A. L. Gevorgyan, “On automorphisms of periodic products of groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2012, no. 2, 3–9  mathnet
    18. V. S. Atabekyan, “Normal automorphisms of free Burnside groups”, Izv. Math., 75:2 (2011), 223–237  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    19. V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24  mathnet  crossref  mathscinet  isi  elib  elib
    20. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2011, no. 3, 62–64  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:877
    Russian version PDF:229
    English version PDF:33
    References:95
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025