|
This article is cited in 6 scientific papers (total in 7 papers)
An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients
A. S. Belova, S. V. Konyaginb a Ivanovo State University
b M. V. Lomonosov Moscow State University
Abstract:
We denote by $M_Z^{\downarrow}(n)$ (resp., $K_Z^{\downarrow}(n)$) the smallest value of $a_0$ that can occur in a non-negative trigonometric polynomial
$$
\sum_{k=0}^n a_k\cos(kx)
$$
with non-negative integer coefficients $a_1\geqslant a_2\geqslant\dots\geqslant a_n$ such that $a_n\geqslant 1$ (resp., $\sum_{k=1}^n a_k=n$). We prove that for all natural numbers $n\geqslant 3$
$$
\dfrac{\ln^2 n}{\ln\ln n}\ll K_Z^\downarrow(n)\ll M_Z^\downarrow(n)\ll(\ln n)^3.
$$
Received: 05.04.1996
Citation:
A. S. Belov, S. V. Konyagin, “An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients”, Izv. Math., 60:6 (1996), 1123–1182
Linking options:
https://www.mathnet.ru/eng/im95https://doi.org/10.1070/IM1996v060n06ABEH000095 https://www.mathnet.ru/eng/im/v60/i6/p31
|
Statistics & downloads: |
Abstract page: | 685 | Russian version PDF: | 362 | English version PDF: | 23 | References: | 88 | First page: | 3 |
|