Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 6, Pages 1123–1182
DOI: https://doi.org/10.1070/IM1996v060n06ABEH000095
(Mi im95)
 

This article is cited in 6 scientific papers (total in 7 papers)

An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients

A. S. Belova, S. V. Konyaginb

a Ivanovo State University
b M. V. Lomonosov Moscow State University
References:
Abstract: We denote by $M_Z^{\downarrow}(n)$ (resp., $K_Z^{\downarrow}(n)$) the smallest value of $a_0$ that can occur in a non-negative trigonometric polynomial
$$ \sum_{k=0}^n a_k\cos(kx) $$
with non-negative integer coefficients $a_1\geqslant a_2\geqslant\dots\geqslant a_n$ such that $a_n\geqslant 1$ (resp., $\sum_{k=1}^n a_k=n$). We prove that for all natural numbers $n\geqslant 3$
$$ \dfrac{\ln^2 n}{\ln\ln n}\ll K_Z^\downarrow(n)\ll M_Z^\downarrow(n)\ll(\ln n)^3. $$
Received: 05.04.1996
Bibliographic databases:
Document Type: Article
MSC: 42A05
Language: English
Original paper language: Russian
Citation: A. S. Belov, S. V. Konyagin, “An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients”, Izv. Math., 60:6 (1996), 1123–1182
Citation in format AMSBIB
\Bibitem{BelKon96}
\by A.~S.~Belov, S.~V.~Konyagin
\paper An estimate of the free term of a~non-negative trigonometric polynomial with integer coefficients
\jour Izv. Math.
\yr 1996
\vol 60
\issue 6
\pages 1123--1182
\mathnet{http://mi.mathnet.ru//eng/im95}
\crossref{https://doi.org/10.1070/IM1996v060n06ABEH000095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1438881}
\zmath{https://zbmath.org/?q=an:0885.42001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XF63000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746996554}
Linking options:
  • https://www.mathnet.ru/eng/im95
  • https://doi.org/10.1070/IM1996v060n06ABEH000095
  • https://www.mathnet.ru/eng/im/v60/i6/p31
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:685
    Russian version PDF:362
    English version PDF:23
    References:88
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024