Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1993, Volume 40, Issue 3, Pages 623–635
DOI: https://doi.org/10.1070/IM1993v040n03ABEH002180
(Mi im944)
 

This article is cited in 3 scientific papers (total in 3 papers)

Holomorphic extension of $CR$-functions with singularities on a generic manifold

A. M. Kytmanov, T. N. Nikitina

L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $\Gamma$ be a smooth generic manifold with nonzero Levi form in a domain of holomorphy $\Omega\subset\mathbf C^n$ with $n>1$. Let $\Omega_\Gamma\subset\Omega$ be the domain adjacent to $\Gamma$ to which all $CR$-functions defined on $\Gamma$ extend holomorphically. Let $K=\widehat K_\Omega\subset\Omega$ be a holomorphically convex compact set. We show that every $CR$-function on $\Gamma\setminus K$ of class $\mathscr L_{\text{loc}}^1(\Gamma\setminus K)$ extends holomorphically to $\Omega_\Gamma\setminus K$. When $n=2$ the manifold $\Gamma$ must be closed, i.e., $\partial\Gamma=0$. As a corollary we deduce a result on the removal of singularities of $CR$-functions of finite order of growth near $K$. The proof uses the integral representation of Airapetyan and Khenkin.
Received: 12.05.1991
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1992, Volume 56, Issue 3, Pages 673–686
Bibliographic databases:
UDC: 517.55
MSC: Primary 32D15; Secondary 32F40
Language: English
Original paper language: Russian
Citation: A. M. Kytmanov, T. N. Nikitina, “Holomorphic extension of $CR$-functions with singularities on a generic manifold”, Izv. RAN. Ser. Mat., 56:3 (1992), 673–686; Russian Acad. Sci. Izv. Math., 40:3 (1993), 623–635
Citation in format AMSBIB
\Bibitem{KytNik92}
\by A.~M.~Kytmanov, T.~N.~Nikitina
\paper Holomorphic extension of $CR$-functions with singularities on a generic manifold
\jour Izv. RAN. Ser. Mat.
\yr 1992
\vol 56
\issue 3
\pages 673--686
\mathnet{http://mi.mathnet.ru/im944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1188334}
\zmath{https://zbmath.org/?q=an:0787.32016|0768.32010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..40..623K}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 40
\issue 3
\pages 623--635
\crossref{https://doi.org/10.1070/IM1993v040n03ABEH002180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LR56700008}
Linking options:
  • https://www.mathnet.ru/eng/im944
  • https://doi.org/10.1070/IM1993v040n03ABEH002180
  • https://www.mathnet.ru/eng/im/v56/i3/p673
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:324
    Russian version PDF:77
    English version PDF:19
    References:72
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024