Abstract:
This article studies systematically the boundary correspondence problem for Qp,q-homeomorphisms. The presented example demonstrates a deformation of the Euclidean boundary with the weight function degenerating on the boundary.
Keywords:
quasiconformal analysis, Sobolev space, composition operator, capacity of a condenser, capacity metric, capacity boundary.
This article is prepared in fulfillment of the state contract of the Ministry of Education and Science of the Russian Federation for the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (Project no. FWNF-2022-0006). A. Molchanova was supported by the European Unions Horizon 2020 research and innovation programme under the Marie Składowska-Curie grant agreement no. 847693.
In this section, we briefly survey the articles dealing with the boundary behaviour of mappings in quasiconformal analysis. Consider two domains D,D′⊂R2 bounded by Jordan curves and a conformal mapping f:D→D′. The classical result, established independently by Carathéodory [1] and Osgood and Taylor [2], asserts that f extends to the boundary, giving a homeomorphism ¯f:¯D→¯D′. The Jordan condition for the boundary is necessary, which is easy to see in the example of a slit disc. Nevertheless, a homeomorphic extension is possible for some generalized boundary accounting for the geometry of the domain. This construction, introduced by Carathéodory [1] and called the prime end boundary, initiated intensive applications of the geometric approach to study the boundary behaviour of mappings.
Carathéodory’s prime end theory received developments on the plane R2 (see [3], [4]) and in the space Rn for n>2 (see [5], [6]), in studying Dirichlet problems for elliptic equations [7], and in the theory of dynamical systems (see [8], [9]). For more detailed surveys of the available results and literature, see [10]–[13].
A natural development of these questions is to study the boundary behaviour of quasiconformal mappings in space. It requires a more refined analysis of the geometric properties of domains. Indeed, in the higher-dimensional case there exist a Jordan domain and a quasiconformal mapping admitting no homeomorphic extension to the boundary of this domain [14]. In some questions it turned out helpful to describe the geometric properties of domains using the concept of modulus of a curve family [15]. With that, a simple classification of boundary points was introduced: for instance, the properties of the boundary to be quasiconformally flat or quasiconformally accessible in [16], [17], or properties P1 and P2 of [18]. This approach became widely used in the last decade to study the geometric properties of mappings. Let us mention only some articles concerning the boundary correspondence of quasiconformal mappings [19], [20], Q-homeomorphisms, see the book [21] and the articles [13], [22] (a more detailed discussion appears in § 4), as well as the mappings satisfying generalized modular inequalities [23].
An alternative functional-geometric approach to study the boundary behaviour of quasiconformal mappings is based on the relation between the Euclidean geometry of the domain and the functional space L1n via the concept of the variational capacity of a condenser. This approach was founded in [24]–[26] and applied also to studying mappings which are not quasiconformal [27]. As [17] shows, the functional-geometric approach can be interpreted in the language of moduli of curve families.
The three main approaches to the boundary behaviour of mappings, using prime ends, geometric description, and functional-geometric definition, form an hierarchy, as each of them adequately describes the boundary behaviour of certain classes of mappings. This article studies the problem of boundary correspondence for Qp,q-homeomorphisms, whose fundamental properties were established in [29]–[34]. To this end, we complete the domains in special capacity metrics on the image and the preimage, associated with the geometry of a suitable Sobolev class. The elements adjoined to the domain in the completion of the corresponding metric space constitute an improper boundary, which we call the capacity boundaryHρ.
In § 2 the study of the boundary behaviour of the homeomorphism f∈Qp,q defined in § 1 consists in:
(1) continuing f to the capacity boundary Hρ, with the main result stated as Theorem 2.22;
(2) establishing a connection between the elements of the capacity boundary and the points of the Euclidean boundary of the domain, see Theorem 2.37 and Corollaries 2.38 and 2.39.
In § 3, we compare the approaches stated in the languages of moduli and capacity. In § 4 we contrast the conclusions of this article with the main results of other approaches to the problem of boundary behaviour of mappings. Some applications of our results are given in § 5.
This article naturally enters the line of publications [28]–[36], preceded by the results of [37]–[39] and the articles cited in the bibliographies in [28]–[34] and arising on the crossroads of the theory of Sobolev function spaces [40], [41] and geometric theory of functions [18], [42]–[48]. Some results of this series of articles have found applications in nonlinear elasticity, see [49].
§ 1. Classes of Qp,q-homeomorphisms
In what follows D and D′ stand for domains (open connected sets) in Rn. The norm |x|p of a vector x=(x1,x2,…,xn)∈Rn is defined as |x|p=(∑nk=1|xk|p)1/p for p∈[1,∞) and |x|∞=maxk=1,…,n|xk|. A ball in the norm |x|2 is a Euclidean ball, while in the norm |x|∞ it is a Euclidean cube.
1.1. Definitions of Sobolev spaces and the capacity of condensers
For the general theory of Sobolev spaces, the reader is referred to [40], [41]. We recall that a function u:D→R is of Sobolev classL1p(D) if u∈L1,loc(D), meaning that u∈L1(U) for every domain U compactly embedded into D, written U⋐, and it has the generalized derivatives \partial u/dx_j\in L_{1,\mathrm{loc}}(D) for every j=1,\dots,n and finite seminorm
where \nabla u(y)=(\partial u/dx_1,\partial u/dx_2,\dots,\partial u/dx_n) is the generalized gradient of u. A mapping \varphi=(\varphi_1,\dots, \varphi_n)\colon D \to \mathbb R^n belongs to the Sobolev classW^1_{p,\mathrm{loc}}(D; \mathbb{R}^n) whenever \varphi_j(x) \in L_{p,\mathrm{loc}}(D) and \partial\varphi_j/dx_i\in L_{p,\mathrm{loc}}(D) for all j,\,i=1,\dots,n.
We say that a mapping \varphi\colon D\to \mathbb R^n of Sobolev class W^1_{1,\mathrm{loc}}(D;\mathbb{R}^n) is a mapping with finite distortion whenever
\begin{equation}
D\varphi(x)=0\text{ almost everywhere (a.e.) on the set }Z=\{x\in D\colon \det D\varphi (x)=0\}.
\end{equation}
\tag{1.1}
(Meaning \det D\varphi (x)=0 at all points of Z except for a set of Lebesgue measure zero.)
Here, and henceforth, D\varphi (x)=(\partial\varphi_j(x)/\partial x_i)_{i,j=1}^{n} stands for the Jacobi matrix of the mapping \varphi at x\in D, while |D\varphi (x)|, for its Euclidean operator norm, and \det D\varphi (x), for its determinant, the Jacobian.
A locally integrable function \omega\colon D'\to\mathbb R is called a weight whenever 0\,{<}\,\omega(y)\,{<}\,\infty for a.e. y\in D'. A function u\colon D'\to\mathbb R belongs to the weighted Sobolev classL^1_{p}(D';\omega), with p\in[1,\infty), if u \in L_{1,\mathrm{loc}}(D') and \partial u/\partial y_j \in L_{p}(D';\omega) for every j=1,\dots,n. The seminorm of a function u\in L^1_{p}(D';\omega) is then defined as
holds for every function u\in L^1_p(D')\cap \operatorname{Lip}_{\mathrm{loc}}(D').
1.2. Condensers and their capacity in Sobolev spaces
A condenser in a domain D\subset \mathbb{R}^n is a pair \mathcal E=(F_1,F_0) of connected compact sets (continua) F_1, F_0\subset D. For a continuum F\subset U, where U\Subset D is an open connected compactly embedded set, we denote the condenser \mathcal E=(F,\partial U) by \mathcal E=(F,U).
A condenser \mathcal E=(F, U) is called annular whenever the complement in \mathbb R^n to the open set U\setminus F consists of two closed sets each of which is connected: the bounded connected component is the continuum F, and the unbounded component is \mathbb R^n\setminus U.
A condenser \mathcal E=(F, U) in \mathbb R^n is called spherical whenever U=B(x,R)=\{y\in\mathbb R^n \colon |y-x|_2< R\} and F=\overline{B(x,r)}=\{y\in\mathbb R^n \colon |y-x|_2 \leqslant r\}, where r<R, and cubical whenever U=Q(x,R)=\{y\in\mathbb R^n \colon |y-x|_\infty< R\} and F=\overline{Q(x,r)}=\{y\in\mathbb R^n \colon |y-x|_\infty\leqslant r\}, respectively.
Definition 1.1. A function u\colon D\to\mathbb R of the class W^1_{1,\mathrm{loc}}(D) is called admissible for a condenser \mathcal E=(F_1,F_0)\subset D whenever
(1) u is continuous,
(2) u\equiv 1 on F_1, and
(3) u \equiv 0 on F_0.
We denote the collection of admissible functions for a condenser \mathcal E=(F_1,F_0) by \mathcal A(\mathcal E).
The capacity of a condenser \mathcal E=(F_1,F_0) in the space L^1_q(D) with q\in[1,\infty) is defined as
where the infimum is over all admissible functions u \in\mathcal A(\mathcal E)\cap \operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega) for the condenser \mathcal E=(F_1,F_0).
See the books [41], [44], which present the properties of capacity in Sobolev spaces. For more details on the properties of weighted capacity (for a special class of admissible weights), see [50], Chap. 2.
The definition of capacity yields the following property.
Property 1.2 (subordination principle). Consider two condensers \mathcal E'\,{=}\,(F'_1,F'_0) and \mathcal E=(F_1,F_0) in a domain D' with the plates of the first condenser included in those of the second one, F'_1\subset F_1 and F'_0\subset F_0. Then
1.3. A quasi-additive set function and its properties
Denote by {\mathcal O}(D) a system of open sets in D with the following properties:
(1) D\in{\mathcal O}(D) and if the closure of an open ball B (cube Q) lies in D, then B\in{\mathcal O}(D) (Q\in{\mathcal O}(D));
(2) if U_1,\dots,U_k\in{\mathcal O}(D) is a disjoint system of open sets, then \bigcup_{i=1}^kU_i\in{\mathcal O}(D), where k\in \mathbb N is an arbitrary number.
The choice of a ball or cube in this definition depends on the choice of a system of elementary sets with respect to which the set function is differentiated, see (1.6).
Definition 1.3. A mapping \Phi\colon {\mathcal O}(D)\to[0,\infty] is called a quasi-additive set function if
(1) for every point x\in D there exists a number \delta(x)\in(0,\infty) such that \overline{B(x,\delta(x))}\subset D and 0<\Phi(B(x,\delta))<\infty for all \delta\in(0, \delta(x)), and the ball in this condition can be replaced with a cube;
(2) every finite tuple \{U_i\in{\mathcal O}(D)\}, for i=1,\dots,l, of disjoint open sets with
then this set function is called finitely additive, while if (1.5) holds for every countable tuple \{U_i\in{\mathcal O}(D)\} of disjoint open sets, then this set function is called countably additive. The function \Phi is monotone whenever \Phi(U_1)\leqslant \Phi(U_2) as soon as U_1\subset U_2 \subset D with U_1,U_2\in{\mathcal O}(D). Every quasi-additive set function is obviously monotone. A quasi-additive set function \Phi\colon {\mathcal O}(D)\to[0,\infty] is called a bounded quasi-additive set function whenever D\in {\mathcal O}(D) and \Phi(D)<\infty.
It is known (see [51]–[53] for instance) that every quasi-additive set function \Phi defined on some system {\mathcal O}(D') of open subsets of a domain D' is differentiable in the following sense: for a.e. point y\in D' there exists the finite derivative1[x]1Here, and henceforth, B_\delta is an arbitrary ball B(z,\delta)\subset D' containing the point y. The ball in this proposition can be replaced with a cube.:
1.4. Definition of the class of \mathcal Q_{p,q}(D',\omega;D)-homeomorphisms and their properties
Denote by \mathcal O_{\mathrm c}(D') the minimal system of open sets in D', which contains:
(1) D';
(2) every open cube Q whenever \overline Q\subset D';
(3) the complement Q_2\setminus \overline Q_1 whenever Q_1\subset Q_2 are two cubes with a common center and \overline Q_2\subset D'.
In Definition 1.4 and Theorem 1.6, we consider the mapping \Phi\colon \mathcal O_{\mathrm c}(D')\to[0,\infty) as the bounded quasi-additive set function.
Definition 1.4 [31]. Given two domains D, D'\subset\mathbb R^n, for n\geqslant2, we say that a homeomorphism f\colon D'\to D is of class2[x]2In the acronym \mathcal{CRQ}, the letters stand for the words “cube”, “ring” and “quasiconformal”. Therefore, \mathcal{CRQ} is quasiconformality determined by cubical condensers.\mathcal{CRQ}_{p, q}(D',\omega;D), where 1< q\leqslant p<\infty for n\geqslant3 and 1\leqslant q\leqslant p<\infty for n=2, while \omega\in L_{1,\mathrm{loc}}(D') is a weight function, if there exist
(1) a constant K_p>0 for q=p or
(2) a bounded quasi-additive function \Psi_{p,q} defined on the system \mathcal O_{\mathrm c}(D') of open sets in D' for q<p
such that for every cubical condenser \mathcal E=(\overline{Q(x,r)}, Q(x,R))\subset D' with 0<r<R with the image f(\mathcal E)=(f(\overline{Q(x,r)}), f(Q(x,R))\subset D we have
Definition 1.5 (see [31], [32]). Let D and D' be open sets in \mathbb R^n with n\geqslant 2, 1< q\leqslant p<\infty for n\geqslant3 and 1\leqslant q\leqslant p<\infty for n=2, and \omega\in L_{1,\mathrm{loc}}(D') be a weight function. We say that a homeomorphism \varphi \colon D\to D' belongs to the class \mathcal{Q}_{p, q}(D',\omega;D), whenever each condenser \mathcal E=(F_1,F_0) in D' with the preimage \varphi^{-1}(\mathcal E)=(\varphi^{-1}(F_1),\varphi^{-1}(F_0)) in D satisfies
where 1/\sigma=1/q-1/p, while \widetilde\Psi is some bounded quasi-additive set function defined on open subsets of D'.
It is easy to see that if \varphi\in\mathcal{Q}_{p, q}(D',\omega;D), then f=\varphi^{-1}\in\mathcal{CRQ}_{p, q}(D',\omega;D).
The following Theorem 1.6 gives an analytic description of the mappings with inverses of class \mathcal{CRQ}_{p, q}(D',\omega;D).
Theorem 1.6 (see [33], Theorem 1). A homeomorphism f\colon D' \to D belongs to the class \mathcal{CRQ}_{p, q}(D',\omega;D) with 1<q\leqslant p<\infty for n\geqslant 3 and 1\leqslant q\leqslant p<\infty for n=2 if and only if the inverse homeomorphism \varphi=f^{-1}\colon D\to D' enjoys one of the following properties:
(1) the composition operator \varphi^*\colon {L}^1_p(D';\omega) \cap \operatorname{Lip}_{\mathrm{loc}}(D')\to L^1_q(D), with 1< q \leqslant p<\infty, is bounded;
(2) the homeomorphism \varphi\colon D\to D' is of class \mathcal{Q}_{p, q}(D',\omega;D) in the sense of Definition 1.5, with some bounded quasi-additive set function \widetilde\Psi defined on open subsets of D';
belongs to L_{\sigma}(D), where 1/\sigma=1/q-1/p if 1< q<p<\infty and \sigma=\infty if q=p;
(4) if n=2, then claims (1)–(3) also hold in the case 1=q \leqslant p<\infty.
Note that Theorem 1.6 is a consequence of [29], Theorem 1, [30], and [31], [32], Theorem 1, see details in [33], Theorem 1. The smallest quantities K_p and \widetilde K_p (quasiadditive functions \Psi and \widetilde\Psi) in (1.8), (1.9) satisfy
here, \mathring{\mathrm{Lip}}_{\mathrm{loc}}(W) stands for the space of locally Lipschitz functions vanishing on the boundary of W, see [34], Theorem 4.
Let us formulate the following corollary of Theorem 1.6.
Corollary 1.7. A homeomorphism f\colon D\to D' is of class \mathcal{CRQ}_{p, q}(D',\omega;D) with 1<q\leqslant p<\infty for n\geqslant 3 and 1\leqslant q\leqslant p<\infty for n=2 if and only if \varphi=f^{-1} is also of class \mathcal{Q}_{p, q}(D',\omega;D).
Therefore, from now on, we use only \mathcal{Q}_{p, q}(D',\omega;D) to refer to both classes \mathcal{CRQ}_{p, q}(D',\omega;D) and \mathcal{Q}_{p, q}(D',\omega;D).
The differential properties of mappings of the classes \mathcal{Q}_{p, q}(D',\omega;D) are established in [30] and [31], Theorem 2.
Remark 1.8. The homeomorphisms \varphi\colon D \to D' with f=\varphi^{-1}\in \mathcal{Q}_{p, q}(D',\omega;D) in the cases
(1) q=p=n and \omega\equiv1 coincide with quasiconformal mappings [18], [42]–[45];
(2) 1<q=p<\infty and \omega\equiv1 were studied in [28];
(3) 1<q<p<\infty and \omega\equiv1 were studied in [28], [37]–[39].
Let us extract from Theorem 1.6 and Corollary 1.7 the following two examples of Q_{p,q}-homeomorphisms.
Example 1.9 (see [29], [32]). If a homeomorphism \varphi\colon D \to D' induces a bounded composition operator \varphi^*\colon {L}^1_p(D';\omega) \cap \operatorname{Lip}_{\mathrm{loc}}(D')\to L^1_q(D), with 1<q\leqslant p<\infty for n\geqslant 3 and 1\leqslant q\leqslant p<\infty for n=2, then the inverse homeomorphism f=\varphi^{-1}\colon D'\to D is of class \mathcal{Q}_{p, q}(D',\omega;D).
Example 1.10 (see [29], [32]). Consider a homeomorphism \varphi \colon D \to D' of the Sobolev class W^1_{q, \mathrm{loc}}(D) with finite distortion (1.1) and the operator function distortion (1.10) of class L_{\sigma}(D), where 1/\sigma=1/q-1/p for 1\leqslant q<p<\infty and \sigma=\infty for q=p.
If 1<q\leqslant p<\infty for n\geqslant 3 and 1\leqslant q\leqslant p<\infty for n=2, then the inverse homeomorphism f=\varphi^{-1}\colon D'\to D is of class \mathcal{Q}_{p, q}(D',\omega;D).
In addition to Examples 1.9 and 1.10, other classes of mappings in the family \mathcal Q_{p,q}(D',\omega;D) were considered in [31]. Let us present some of them.
Example 1.11 (see [31], Example 3)). Consider a homeomorphism \varphi\colon D\to D' of Sobolev class W^1_{p,\mathrm{loc}}(D), where 1<p<\infty for n\geqslant3 and 1\leqslant p<\infty for n=2, with finite distortion. The inverse homeomorphism f=\varphi^{-1}\colon D'\to D is of class \mathcal Q_{p,p}(D',\omega;D) with the constant K_p=1 and the weight function
Remark 1.12. As Theorem 5 in [31] shows, the weight function (1.13) is locally integrable.
Example 1.13 (see [31], Example 4). For n-1< s<\infty, consider a homeomorphism f \colon D' \to D of open domains D',D\subset \mathbb{R}^n, where n\geqslant 2, such that
Say that a mapping f\in W^1_{1, \mathrm{loc}}(D') has finite codistortion if the adjoint matrix \operatorname{adj} Df(y) of the differential equals 0 a.e. on the zero set of the Jacobian
\begin{equation*}
Z=\{y\in D' \mid \det Df(y)=0\}.
\end{equation*}
\notag
Example 1.14 (see [31], Example 5). For n-1< s<\infty, consider a homeomorphism f \colon D' \to D of domains D',D\subset \mathbb{R}^n, with n\geqslant 2, such that
belongs to L_{p}(D'), where p=s/(s-(n-1)) and n-1<s<\infty.
Then the inverse homeomorphism \varphi=f^{-1}\colon D\to D' has the properties
(4) \varphi\in W^1_{p, \mathrm{loc}}(D) and p=s/(s-(n-1));
(5) \varphi has finite distortion;
and the homeomorphism f\colon D'\to D
(6) is of class \mathcal Q_{p,p}(D',\omega;D) with the constant K_p=1 and the weight function (1.15);
(7) has finite distortion for n-1< s<n+1/(n-2).
Example 1.15 (see [35], Definition 11, Theorem 34). A homeomorphism f\colon D'\,{\to}\, D is called a homeomorphism with inner bounded\theta-weighted(s,r)-distortion, or of class \mathcal{ID}(D';s,r;\theta,1), where n-1< s\leqslant r<\infty, whenever:
(1) f\in W^1_{n-1,\mathrm{loc}}(D');
(2) the mapping f has finite codistortion;
(3) the function of local \theta-weight (s,r)-distortion
\begin{equation}
D' \ni x\mapsto \mathcal K_{s,r}^{\theta,1}(x,f) =\begin{cases} \dfrac{\theta^{(n-1)/s}(x)|{\operatorname{adj}} D f(x)|}{|{\det D f(x)}|^{(n-1)/r}} &\text{if } \det D f(x)\ne0, \\ 0 &\text{otherwise} \end{cases}
\end{equation}
\tag{1.17}
belongs to L_{\varrho}(\Omega), where \varrho can be found from the condition 1/\varrho = (n-1)/s-(n- 1)/r, and \varrho= \infty for s=r.
Hence, under the condition n-1< s\leqslant r<\infty and the local summability of the function \omega(x)=\theta^{-(n-1)/(s-(n-1))}(x), the homeomorphism f\colon D'\to D belongs to \mathcal Q_{p,q}(D',\omega;D), where q=r/(r-(n-1)) and p=s/(s-(n-1)), for 1<q\leqslant p<\infty. Furthermore, the factors on the right-hand side of (1.8) are equal to K_p=\|\mathcal K_{r,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\infty}(\Omega)\| for q=p and
Example 1.16 (see [36], Definition 3, Theorem 19). A homeomorphism f\colon D'\to D is of class \mathcal{OD}(D';s,r;\theta,1), with n-1< s\leqslant r<\infty, and is called a mapping with outer bounded\theta-weighted(s,r)-distortion, whenever:
(1) f\in W^1_{n-1,\mathrm{loc}}(D');
(2) the mapping f has finite distortion;
(3) the function of local \theta-weighted (s,r)-distortion
\begin{equation*}
D' \ni x\mapsto K_{s,r}^{\theta,1}(x,f)= \begin{cases} \dfrac{\theta^{1/s}(x)|D f(x)|}{|{\det D f(x)}|^{1/r}} &\text{if }\det D f(x)\ne0, \\ 0 &\text{otherwise} \end{cases}
\end{equation*}
\notag
belongs to L_{\rho}(D'), where \rho can be found from the conditions 1/\rho = 1/s-1/r and \rho = \infty for s=r.
Hence, under the condition n-1< s\leqslant r<\infty and the local summability of \omega(x)=\theta^{-(n-1)/(s-(n-1))}(x), the homeomorphism f\colon D'\to D belongs to \mathcal Q_{p,q}(D',\omega;D), where q=r/(r-(n-1)) and p=s/(s-(n-1)) with 1<q\leqslant p<\infty. The factors on the right-hand side of (1.8) are equal to K_p=\|K_{r,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\infty}(D')\|^{n-1} for q=p and
holds under the condition n-1< s\leqslant r<\infty. Moreover, for every homeomorphism f\colon D'\to D of class \mathcal{OD}(D';s,r;\theta,1), with n-1< s\leqslant r<\infty, we have
where the numbers \rho and \sigma are defined in Examples 1.15 and 1.16.
More examples of \mathcal{OD}(D'; s, r; \theta, 1)-homeomorphisms in \mathbb R^2 can be found in [54].
§ 2. Behaviour of mappings with respect to the capacity metric
We fix two domains D, D'\subset \mathbb R^n, a locally integrable weight function \omega\colon D'\to\mathbb R on D', and a mapping f\in\mathcal Q_{p,q}(D',\omega;D) with n-1<q\leqslant p<\infty.
Recall that Corollary 1.7 guarantees that f satisfies (1.9) for every condenser \mathcal E=(F_1,F_0) in D'.
We also fix some continuum F_0\subset D' with non-empty interior such that the open set D'\setminus F_0 is connected.
2.1. Capacity metric functions in domains for the homeomorphisms of class \mathcal Q_{p,q}(D',\omega;D) for n-1<q\leqslant p\leqslant n
Observe that in the case n-1<q\leqslant n the left-hand side of (1.9) is non-zero as long as the continuum f(F_1) is distinct from a point. Indeed, we have the following proposition.
Lemma 2.1. In a domain D\subset \mathbb R^n, let B_0\Subset D and B_1\Subset D be two balls satisfying \overline{B_0}\cap\overline{B_1}=\varnothing. Then, for n-1<q\leqslant n, a fixed continuum T_0\subset B_0, and an arbitrary continuum T_1\subset \overline{B_1}, the relation
holds3[x]3In other words, the left-hand side of (1.9) is small if and only if \operatorname{diam} T_1 is small (under the condition that the continuum T_1 lies in some ball B_1\Subset D with \overline{B_0}\cap\overline{B_1}=\varnothing). if and only if \operatorname{diam} T_1\to 0.
Proof. Let us present the scheme of the proof of Lemma 2.1.
Necessity. By [48], Lemma 3, there is a John domain \Omega\in J(\alpha,\beta) (see [48], Definition 8) compactly embedded into D, with some positive parameters \alpha and \beta depending on D and the balls B_0 and B_1, which includes the closures of both balls. On the domain \Omega under the conditions 1\leqslant q < n and q\leqslant q^*\leqslant nq/(n-q) we have the following Poincaré inequality [55], Theorems 4 and 9:
where c_u and C_\Omega are constants, with C_\Omega>0 independent of u, \alpha, and \beta. By (2.1) there exists a sequence of continua T_{1,k}\subset B_1 and admissible functions u_k\in C(\Omega)\cap L^1_q(\Omega) for the capacity \operatorname{cap}((T_{1,k}, T_0); L^1_q(\Omega)) such that
Now inequality (2.2) implies that \|u_k - c_{u_k}\mid L_{q^*}(\Omega)\|\to 0 as k\to\infty. Note that the sequence of numbers \{c_{u_k}\} is bounded. Indeed, if \{c_{u_k}\} is not bounded, then, since 0\leqslant u_k\leqslant 1, the left-hand side of (2.2) is also not bounded, which contradicts the right convergence in (2.3). Therefore, we may assume that c_{u_k} converges to some number c_0, and up to subsequence u_{k} - c_{u_{k}}\to 0 for a.e. x\in \Omega as k\to\infty. Hence, u_{k} \to c_0 for a.e. x\in \Omega as k\to\infty, and due to u_{k}|_{B_0}\equiv0 we deduce c_0=0. In addition, \Omega is a bounded domain, and the Lebesgue dominated convergence theorem shows that
From (2.3) and (2.4) we infer that \|u_l \mid W^1_{q}(\Omega)\|\to 0 as l\to\infty. We can extend the restrictions u_l|_{B_1} to the functions \widetilde u_l\in W^1_{q}(\mathbb R^n) so that the extension operator is bounded. Therefore,
We obtain then that the capacity of the continua T_{1,l} in the space W^1_{q}(\mathbb R^n) of Bessel potentials is positive and tends to 0 as l\to\infty. For n-1< q < n the latter is possible only if \operatorname{diam} T_{1,l}\to 0 as l\to\infty; see the details in [56], [41].
The case q =n reduces to the previous one using Hölder’s inequality.
and so, it suffices to prove that \operatorname{cap}((T_1,\overline{B_0}); L^1_q(D))\to0 as \operatorname{diam} T_1\to 0.
We put R=\operatorname{dist}(B_0,B_1) and suppose that the continuum T_1 satisfies r_{T_1}<R. Then we may assume that every admissible function for the condenser (\overline{B(x,r_{T_1})}, B(x,R)) is also admissible for the condenser (T_1,T_0), and so
for an arbitrary condenser \mathcal E=(\gamma,F_0), where \gamma\colon[a,b]\to D'\setminus F_0 is an arbitrary closed curve with distinct endpoints x=\gamma(a) and y=\gamma(b).
Proof. Since the continuum F_0\subset D' has non-empty interior, there exists a closed ball \overline{B_0'}\subset F_0 and a closed ball \overline{B_1'}\subset D' centered on \gamma such that \overline{B_1'}\cap \overline{B_0'}=\varnothing. Consider the condenser \mathcal E=(\gamma\cap\overline{B_1'}, \overline{B_0'}). By (1.8), it suffices to show that
The latter follows from Lemma 2.1. Indeed, there are closed disjoint balls \overline{B_0''}\subset f(\overline{B_0'}) and \overline{B_1''}\subset f(\overline{B_1'}) whose intersection \gamma\cap\overline{B_1''} is a nondegenerate continuum. Then, Lemma 2.1 and (1.8) yield
where the infimum is over all curves \overline{xy} in D'\setminus F_0 with endpoints x,y\in D'\setminus F_0.
By analogy, we define the capacityq-metric function\rho_{q,f(F_0)}(a,b) between two points a,b \in D \setminus f(F_0) with respect to the continuum f(F_0) in the image D':
Proposition 2.4. If a homeomorphism f\colon D' \to D belongs to \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant2 for n=2, then the capacity metric functions satisfy
provided that q<p. Passing to the infimum over all curves \overline{xy}\subset D'\setminus F_0 with endpoints x and y, we arrive at the second inequality in (2.9).
The case q=p is similar.
The proposition is proved.
Proposition 2.5. In the case n-1<q\leqslant p\leqslant n, for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant2 for n=2, the capacity (\omega,p)-metric function \rho^{\omega}_{p,F_0}(x,y) enjoys the properties
(1) \rho^{\omega}_{p,F_0}(x,y)=\rho^{\omega}_{p,F_0}(y,x) for all points x,y\in D' \setminus F_0;
(2) \rho^{\omega}_{p,F_0}(x,z)\leqslant \rho^{\omega}_{p,F_0}(x,y)+\rho^{\omega}_{p,F_0}(y,z) for all points x,y,z\in D' \setminus F_0.
Proof. Property (1) is obvious.
To verify the second property, consider the case x\ne z, x\ne y, y\ne z; otherwise property (2) obviously holds. We fix \varepsilon>0 and some curves \overline{xy} and \overline{yz} with endpoints x, y and y, z, respectively, such that
Take two functions u_1 and u_2 admissible for the capacities \operatorname{cap}((\overline{xy}, F_0); L^1_p(D';\omega)) and \operatorname{cap}((\overline{yz}, F_0); L^1_p(D';\omega)) such that
It is easy to see that u_1+u_2 is admissible for the capacity \operatorname{cap}^{1/p}((\overline{xy}\cup\overline{yz}, F_0); L^1_p(D';\omega)). Hence, from (2.10)–(2.13), we obtain
Since \varepsilon>0 is arbitrarily, the triangle inequality is verified, proving the proposition.
Recall that the metric function \rho^{\omega}_{p,F_0} is defined in (2.7) for distinct points x\ne y of the open set D' \setminus F_0. If x=y\in D' \setminus F_0, we put
Suppose now that (2.15) holds: \rho^{\omega}_{p,F_0}(x,x)=\operatorname{cap}^{1/p}((\{x\}, F_0); L^1_p(D';\omega))=0. By the definition of capacity, for every \varepsilon\in(0,1/2), there exists a function u_\varepsilon\in \operatorname{Lip}_{\mathrm{loc}}(D') such that u_\varepsilon(y)\in [0,1] for all y\in D', while u_\varepsilon\vert_{F_0}=0, u_\varepsilon(x)=1, and
Since x is an interior point of \{y\in D'\colon u_\varepsilon(y)>1-\varepsilon\}, we have B(x,r_0)\subset \{y\in D'\colon u_\varepsilon(y)>1-\varepsilon\} for some ball B(x,r_0). Consequently, the function
Observe that (2.16) always holds in the case q \leqslant p \leqslant n and \omega\equiv1. In the case of a non-trivial weight function condition (2.15) need not hold, see Examples 2.7 and 2.8.
Example 2.7 (see [50], Example 2.22). Consider the domain D' = B(0,2) with the weight \omega(x) = |x|^{\alpha}, where \alpha> -n, and p>1. The capacity of the condenser \mathcal E=(\overline{B(0,r)}, B(0,1)) with 0<r<1 in the space L_p(D';\omega), where the weight function \omega belongs to the special class of weight functions called admissible in [50], is
where \sigma_{n-1} is the measure of the unit (n-1)-dimensional sphere in \mathbb R^n, while c(n,p,\alpha) is a constant depending only on n, p, and \alpha. Since
the definition of the capacity metric function yields \rho^{\omega}_{p,S(0,1)}(0,0)\neq 0 if p-n-\alpha>0.
In the following example, we will construct a weight function for which condition (2.15) is violated on a countable dense subset of D'.
Example 2.8. Consider an arbitrary bounded domain D' \subset\mathbb R^n, a continuum F_0, and a number \alpha satisfying p-n-\alpha>0. With each point x_i of some countable dense subset of D', we associate the function
It is not difficult to check that the function \sigma is integrable on D'. We fix an index j\in\mathbb N and a function u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\sigma) admissible for the capacity \operatorname{cap}\bigl((\{x_j\}, F_0); L^1_p(D';\omega)\bigr). In view of the inequality
which holds for every admissible function u mentioned above, the left-hand side of the last inequality is separated from zero by some constant independent of u. Therefore,
Example 2.9. Consider a bounded domain D' \subset\mathbb R^n, a point x\in D', a continuum F_0 \subset D' \setminus B(x, e^{-1}), and a weight \omega\colon D' \to [1,\infty) with \omega \in \mathrm{BMO}(D'). For 0<r<e^{-2}, define the function
\begin{equation*}
u_r(y) = \begin{cases} 0 &\text{ if } y\in D' \setminus B(x, e^{-1}), \\ \dfrac{\log(\log (1/|y|))}{\log(\log(1/r))} &\text{ if } y\in D'\cap (B(x, e^{-1})\setminus B(x, r)), \\ 1 &\text{ if } y\in D' \cap B(x, r). \end{cases}
\end{equation*}
\notag
It is not difficult to verify that u_r belongs to the class of admissible functions \mathcal{A}(B(x,r)\cap D', F_0). Now by the definition of the capacity
where the constant C depends only on n and \omega, but is independent of r.
Examples 2.7–2.9 show that condition (2.15) depends on the properties of the weight function \omega.
We let d(x,y) denote the Euclidean distance between two points x,y\,{\in}\,\mathbb R^n.
Proposition 2.10. Consider a homeomorphism f\colon D' \to D belonging to the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant2 for n=2.
(1) If y\in D'\setminus F_0 and \rho^{\omega}_{p,F_0}(z_m,y)\to 0 as m\to\infty in the domain D'\setminus F_0, then
(2) Provided with (2.15) at y\in D'\setminus F_0, the convergence d(z_m,y)\to0 as m\to\infty implies the convergence \rho^{\omega}_{p,F_0}(z_m,y)\to 0 with respect to the capacity (\omega,p)-metric function \rho^{\omega}_{p,F_0} in the domain D'\setminus F_0.
Proof. (1) By Definition 2.3, for each m\in \mathbb N, there exists a continuous curve \gamma_m\colon [0,1]\to D'\setminus F_0 with endpoints z_m=\gamma_m(0), y=\gamma_m(1)\in D'\setminus F_0 such that
valid for all m\in \mathbb N, from (2.18) and the condition \rho^{\omega}_{p,F_0}(z_m,y)\to 0 as m\to\infty in the domain D'\setminus F_0, we infer that
Furthermore, from (2.9) and the condition \rho^{\omega}_{p,F_0}(z_m,y)\to 0 as m\to\infty we find that \rho_{q,f(F_0)}(f(z_m),f(y))\to 0 as m\to\infty. By Lemma 2.1, the latter is possible if and only if f(z_m)\to f(y) as m\to\infty. Hence z_m\to y as m\to\infty.
(2) Assume that condition (2.15) holds at y\in D'\setminus F_0 and d(z_m,y)\to0 as m\to\infty for some sequence z_m\in D'\setminus F_0. On assuming condition (2.15), Proposition 2.6 implies that
Given a set B\subset\mathbb R^n, we let \operatorname{dist}(y,B):=\inf_{z\in B}d(y,z) denote the distance from a point y\in\mathbb R^n to B, where d(\,{\cdot}\,,{\cdot}\,) is the Euclidean distance. The following proposition generalizes Proposition 2.10.
Proposition 2.11. Consider a homeomorphism f\colon D' \to D belonging to the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant2 for n=2. If \{y_l\in D'\setminus F_0\}, for l\in \mathbb N, is a fundamental sequence with respect to the metric function \rho^{\omega}_{p,F_0}, while y is one of its partial limits in the topology of the extended space \overline{\mathbb R^n}, then the following claims hold:
(1) if y\in D'\setminus F_0, then d(y_l,y)\to 0 as l\to \infty;
(2) if y\in F_0, then d(y_l,y)\to 0 as l\to \infty;
(3) if y\in \partial D' and \{y_{l}\in D'\} is bounded, then \operatorname{dist}(y_l, \partial D')\to 0 as l\to \infty;
(4) if \{y\}=\overline{\mathbb R^n}\setminus \mathbb R^n, either y_l\to y as l\to \infty in the topology of \overline{\mathbb R^n}, or \varliminf_{\,l\to \infty}d(y_l,0)\,{<}\,\infty and \lim_{k\to \infty}\operatorname{dist}(y_{l_k}, \partial D')=0 for every subsequence \{y_{l_k}\in D'\} bounded in \mathbb R^n.
Proof. Let us prove the claims of Proposition 2.11 one by one.
(1) Take a fundamental sequence \{y_l\in D'\setminus F_0\}, for l\in \mathbb N, with respect to the metric function \rho^{\omega}_{p,F_0} and its subsequence \{y_{l_k}\in D'\setminus F_0\}, for k\in \mathbb N, converging in the topology of the Euclidean space \mathbb R^n to some point y\in D'\setminus F_0 as k\to \infty. By (2.9), the sequence \{f(y_l)\in D\setminus f(F_0)\}, l\in \mathbb N, is also fundamental with respect to \rho_{q,f(F_0)}. In addition, since f is continuous at y\in D'\setminus F_0, we have the convergence f(y_{l_k})\to f(y) as k\to \infty. Lemma 2.1 implies the convergence \rho_{q,f(F_0)}(f(y_{l_k}),f(y))\to 0 as k\to \infty. Since the sequence \{f(y_l)\in D\setminus f(F_0)\}, for l\in \mathbb N, is fundamental with respect to the metric function \rho_{q,f(F_0)}, we see that \rho_{q,f(F_0)}(f(y_{l}),f(y))\to 0 as l\to \infty. Moreover, f(y_{l})\to f(y) as l\to \infty, again by Lemma 2.1. Since f^{-1} is continuous at f(y), we infer that y_{l}\to y as l\to \infty.
(2) Take a fundamental sequence \{y_l\in D'\setminus F_0\}, l\in \mathbb N, with respect to the metric function \rho^{\omega}_{p,F_0} and its subsequence \{y_{l_k}\in D'\setminus F_0\}, k\in \mathbb N, converging in the topology of the Euclidean space \mathbb R^n to some point y\in F_0 as k\to\infty. The second claim will be justified once we verify that the stated properties contradict the existence of a subsequence \{y_{l_j}\}, j\in \mathbb N, such that d(y_{l_j},y)\geqslant 1/\beta for all j\in \mathbb N, where \beta>1 is some number. Indeed, if such a subsequence exists, then
for all j\in \mathbb N, where \beta'>1 is some number, whose existence is ensured by the locally uniform continuity of the homeomorphism f. On the other hand, the sequence \{f(y_l)\in D\setminus f(F_0)\}, for l\in \mathbb N, is fundamental with respect to the metric function \rho_{q,f(F_0)}. Applying the subordination principle, see Property 1.2, we infer that this sequence is also fundamental with respect to the metric function \rho_{q,K} for an arbitrary compact set K\subset \operatorname{int}f(F_0) with non-empty interior. By Lemma 2.1, the sequence f(y_{l}) converges to f(y)\notin K as l\to \infty. The latter contradicts (2.20).
(3) Take a partial limit y=\lim_{j\to \infty} y_{l_j}\in \partial D' and assume on the contrary that there exists a subsequence \{y_{l_k}\}, for k\in \mathbb N, such that \operatorname{dist}(y_{l_k}, \partial D')\geqslant \beta_0>0 for all k\in \mathbb N, where \beta_0 is some number. By the latter property, since \{y_{l}\} is bounded, we may assume that the subsequence \{y_{l_k}\} converges to some z\in D'. Consequently, the hypotheses of the first claim are fulfilled, and so y_l\to z as l\to\infty, which contradicts the property \lim_{j\to \infty} y_{l_j}=y \in \partial D'.
(4) If under the condition \{y\}=\overline{\mathbb R^n}\setminus \mathbb R^n we have \varliminf_{\,l\to \infty}d(y_l,0)=\infty, then y_l\to y as l\to \infty in the topology of \overline{\mathbb R^n}.
Assume that if \varliminf_{\,l\to \infty}d(y_l,0)<\infty, then \varlimsup_{k\to \infty}\operatorname{dist}(y_{l_k}, \partial D')> 0 for some bounded subsequence \{y_{l_k}\}, for k\in \mathbb N. Then some subsequence y_{l_{k_j}}\to z\in D' as j\to\infty. The first claim yields y_{l}\to z\in D' as l\to\infty, which contradicts the hypotheses of claim (4). Proposition 2.11 is proved.
Remark 2.12. Below, we consider the fundamental sequences with respect to the metric function \rho^{\omega}_{p,F_0} which satisfy just one of claims (1), (3), and (4) of Proposition 2.11.
2.2. Capacity metric and completion of the domain
Definition 2.13. Let D'_{\rho,p} be the collection of points \{y\in D'\setminus F_0\} with the capacity metric function \rho^{\omega}_{p,F_0}.
Definition 2.14. Two fundamental sequences \{y_{l}\in D'_{\rho,p}\} and \{z_{l}\in D'_{\rho,p}\}, l\in \mathbb N, with respect to the capacity metric function \rho^{\omega}_{p,F_0} are called equivalent whenever \rho^{\omega}_{p,F_0}(y_l,z_l)\to 0 as l\to \infty.
Let us define a new metric space ({\widetilde D}'_{\rho,p}, \widetilde\rho^{\,\omega}_{p,F_0}):
(1) its elements are the classes of equivalent fundamental sequences, and
(2) the distance between two elements X, Y\in {\widetilde D}'_{\rho,p} equals
Proof. Recall how we identify the points of \{y\in D'\setminus F_0\mid \rho^{\omega}_{p,F_0}(y,y)=0\} with the metric \rho^{\omega}_{p,F_0} and those of some subset in ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}).
With a point y\in {D}'_{\rho,p} we associate the equivalence class i(y)\in {\widetilde D}'_{\rho,p} containing the constant sequence \{y,y,\dots, y,\dots\}. It is obvious that
Definition 2.16. Refer to the metric space ({D}'_{\rho,p}, \rho^{\omega}_{p,F_0}) to the subset \{y\in D'\setminus F_0\mid \rho^{\omega}_{p,F_0}(y,y)=0\} with the metric \rho^{\omega}_{p,F_0}.
Proposition 2.17. Consider a homeomorphism f\colon D' \to D from \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant2 for n=2. We fix an equivalence class h\in {\widetilde D}'_{\rho,p} and take an arbitrary fundamental sequence \{y_l\} in this class. Then the following behaviour of \{y_l\} is possible:
(1) (a) y_l\to y\in D'\setminus F_0 as l\to\infty in the Euclidean metric and the limit y is unique, meaning that it is independent of the choice of sequence in h;
(b) y_l\to y\in F_0 as l\to\infty in the Euclidean metric and the limit y is unique;
(2) otherwise, depending on the choice of fundamental sequence in h, the following cases are possible:
(a) \varlimsup_{l\to \infty}d(y_l,0)<\infty and then \operatorname{dist}(y_l, \partial D')\to 0 as l\to \infty;
(b) \varlimsup_{l\to \infty}d(y_l,0)=\infty and \varliminf_{\,l\to \infty}d(y_l)<\infty, and then
for every bounded subsequence \{y_{l_k}\in D'\} of \mathbb R^n;
(c) \lim_{l\to \infty}d(y_l,0)=\infty.
Proof. The fundamental sequence \{y_l\} of class h\in {\widetilde D}'_{\rho,p} bounded in \mathbb R^n satisfies the hypotheses of Proposition 2.11, and so its claims (1)–(4) can hold for it. It remains to verify that the same claims hold for every bounded sequence \{z_l\} of the class h\in {\widetilde D}'_{\rho,p}.
Indeed, the sequence y_1,z_1,y_2,z_2,\dots,y_n,z_n,\dots is fundamental with respect to the metric function \rho^{\omega}_{p,F_0}, bounded in \mathbb R^n, and has an accumulation point y, which lies either in D' or in \partial D'.
In the first case by claim (1) of Proposition 2.11 some subsequence of the sequence
converges to y\in D'. Hence, both sequences (2.22) and \{z_l\} converge to y as l\to\infty. In the second case, no subsequence \{z_{l_k}\} of the sequence \{z_l\} can converge to any point z\in D', because similar arguments would yield the impossible coincidence y=z. So, if the sequence \{z_l\} is bounded, then claim (3) of Proposition 2.11 shows that \operatorname{dist}(z_l, \partial D')\to 0 as l\to \infty.
If some sequence \{y_l\} of class h\in {\widetilde D}'_{\rho,p} is not bounded, then we should apply claim (4) of Proposition 2.11 to justify claims (2)(b) and (2)(c) of Proposition 2.17.
Now we take another fundamental sequence \{z_l\}, l\in \mathbb N, in the same class h\in {\widetilde D}'_{\rho,p}. Applying Proposition 2.11 to it, we conclude that z_l cannot converge to any point z\in D', as otherwise y_l would also converge to z\in D' as l\to \infty. Thus, for the sequence z_l, only claims (3) or (4) of Proposition 2.11 can hold, which proves Proposition 2.17.
The following example shows that each of the possibilities (a), (b) and (c) of part 2 of Proposition 2.17 can be realized in various sequences of the same class.
Example 2.18 (ridge domain). In [18], [26], and [45], one can find an example of a simply-connected domain with non-trivial boundary elements, although the domain is locally connected at all boundary points of the Euclidean boundary. For q=p=n=3 and \omega \equiv 1, consider the ridge domain
Consequently, \{y^1_l\}, \{y^2_l\} and \{y^3_l\} satisfy conditions (2)(a), (2)(b) and (2)(c) of Proposition 2.17, respectively, since y_l^1,y_{2l}^1 \to (0,0,1) and since \lim_{l\to\infty} d(y_{2l+1}^2,0) =\lim_{l\to\infty} d(y_l^3,0) = \infty. In addition, the chosen sequences lie in the same equivalence class h \in \widetilde{D}'_{\rho,3}. Here, the metric \rho^{\omega}_{p,F_0} is defined with respect to the Sobolev space L^1_3(D') and F_0\subset D' is an arbitrary continuum with non-empty interior.
With the new notation and concepts, we can interpret Proposition 2.4 as follows.
Theorem 2.19 (extension of \mathcal Q_{p,q}-homeomorphisms). Consider a homeomorphism f\colon D' \to D of the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant 2 for n=2. Then
(1) the mapping f\colon D' \to D induces the Lipschitz mapping
of the “completed” metric spaces: with each element X\in( {\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) associate the element \widetilde f(X)\in ({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}) containing the fundamental sequence \{f(x_l)\}, where \{x_l\}\in X, with the estimate for metric distances
Proof. Claim (1) and (2.23) follow directly from Proposition 2.4, while (2.24) is secured by Definition (2.21) of the metric distance between the elements of “completed” spaces. Indeed, if a sequence \{x_l\} belongs to X\in {\widetilde D}'_{\rho,p}, then by (2.23) the sequence \{f(x_l)\} is fundamental with respect to the metric function \widetilde\rho_{q,f(F_0)}. We call the class of equivalent sequences containing \{f(x_l)\} the image of the class X, and denote the resulting mapping by \widetilde f. Deducing that
and using Definition (2.21), as well as (2.23), we obtain the claim.
Therefore, Proposition 2.19 determines the extended mapping \widetilde f.
Definition 2.20. Let f\colon D'{\to}\, D be a homeomorphism of the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant 2 for n=2. Denote by \widetilde f\colon ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})\to({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}) the extension of f to the “completed” metric spaces: to each X\in({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) we associate \widetilde f(X)\in ({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}) containing the fundamental sequence \{f(x_l)\}.
2.3. Capacity boundary. Boundary correspondence of mappings
By Proposition 2.17, in the topology of the extended space \mathbb R^n, the limit points of the fundamental sequence \{y_l\}, l\in \mathbb N, of some class h\in {\widetilde D}'_{\rho,p} can be
(1a) the points y\in D'\setminus F_0: in this case, y_l\to y\in D'\setminus F_0 as l\to\infty in the Euclidean metric;
(1b) the points y\in F_0: in this case, y_l\to y\in F_0 as l\to\infty in the Euclidean metric.
Otherwise, depending on the choice of fundamental sequence \{y_l\}, l\in \mathbb N, of class h, the possible variants are
(2a) the points y\in \partial D';
(2b) the point y=\infty.
Clearly, in case (1a) we can identify the class h\in {\widetilde D}'_{\rho,p} with some point y\in D'\setminus F_0, while in case (1b), with some point y\in F_0.
With this observation at hand, we define the concept of the capacity boundary. By claim (3) of Proposition 2.15, the points of the metric space ({D}'_{\rho,p},\rho^{\omega}_{p,F_0}) are identified with those in some subset of ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) so that the embedding
is called the capacity boundary of D' (respectively, D). The metric on the boundary is induced from the ambient space. The capacity boundary elements of the domain D' or D are the points of the capacity boundary H^{\omega}_{\rho,p}(D') or H_{\rho,q}(D).
Theorem 2.22 (boundary correspondence of \mathcal Q_{p,q}-homeomorphisms). Let f\colon D' \to D be a homeomorphism of the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant 2 for n=2. Then the restriction \widetilde f\mid_{H^\omega_{\rho,p}(D')} is a Lipschitz mapping
Proof. Let \widetilde f\colon ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})\to({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}) be the mapping from Theorem 2.19. Then the restriction \widetilde f\mid_{H^\omega_{\rho,p}(D')} is the Lipschitz mapping
To prove the claim, it remains to verify that the image of this mapping lies in (H_{\rho,q}(D), \widetilde\rho_{q,f(F_0)}).
Assume on the contrary that there exists a boundary element h\,{\in}\, (H^\omega_{\rho,p}(D'), \widetilde\rho^{\,\omega}_{p,F_0}) such that \widetilde f(h)= y\in (D,\widetilde\rho_{q,f(F_0)}). Then there exists a sequence \{x_l\}\in h, where h\in ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}), such that f(x_l)\to y in the metric space (D_{\rho,q},\widetilde\rho_{q,f(F_0)}). By Proposition 2.10, the sequence f(x_l) converges to y\in D in the Euclidean metric as well. Therefore, f^{-1}( f(x_l))=x_l converges to \varphi(y)\in D' in \mathbb{R}^n. Proposition 2.17 shows that every sequence \{z_l\}\in h converges to \varphi(y)\in D' in the Euclidean metric, and so in the metric space ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) as well, see Proposition 2.10, which obviously contradicts the initial assumption. Theorem is proved.
2.4. Support of a boundary element
In this section, we fix an arbitrary number p satisfying n-1< p\leqslant n for n\geqslant 3 and 1\leqslant p\leqslant 2 for n=2.
Definition 2.23. Given a domain D' in \mathbb R^n, the support\mathcal{S}_h of a boundary element h \in H^\omega_{\rho,p}(D') is the set of all accumulation points in the topology of the extended space \overline{\mathbb R^n} of all fundamental sequences with respect to the capacity metric lying in the equivalence class defining h.
Remark 2.24. Proposition 2.17 and Definition 2.21 show that no accumulation point of a sequence in h \in H^\omega_{\rho,p}(D') fundamental with respect to the capacity metric belongs to D'. Therefore,
Proposition 2.25. If D' is a domain in \mathbb R^n, then
(1) the support \mathcal{S}_h of a boundary element h \in H^\omega_{\rho,p}(D') coincides with the intersection \bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'},
By the definition of a boundary element h \in H^\omega_{\rho,p}(D'), there exists a fundamental sequence \{y_l\}\in h with respect to the (\omega,p)-metric function with \rho^{\omega}_{p,F_0}(y_l,h)\to 0 as l\to\infty. For the sequence \{y_l\in D'_{\rho,p}\} and its subsequences, only the behaviour described in Proposition 2.17 is possible:
(a) y_l\to y\in D'\setminus F_0 or y_l\to y\in F_0 as l\to\infty in the Euclidean metric, and the limit y is unique, meaning independent of the choice of sequence in h;
(b) \varlimsup_{l\to \infty}d(y_l,0)<\infty and then \operatorname{dist}(y_l, \partial D')\to 0 as l\to \infty;
(c) \varlimsup_{l\to \infty}d(y_l,0)=\infty and \varliminf_{\,l\to \infty}d(y_l,0)<\infty, and then
In these cases, for every \varepsilon > 0 the elements of the sequence \{y_l\in D'\} starting with some index l_0 lie in B_{\rho}(h,\varepsilon)\cap D' for all l\geqslant l_0. Thus the accumulation points of \{y_l\in D'\} lie in the closure \overline{B_{\rho}(h,\varepsilon) \cap D'} in the topology of the extended space \overline{\mathbb R^n}. Since we choose the fundamental sequence \{y_l\}\in h for the boundary element h arbitrarily, it follows that \mathcal{S}_h \subset\overline{B_{\rho}(h,\varepsilon) \cap D'}. The inclusion (2.28) is established as \varepsilon > 0 is arbitrary.
(2) In the case \rho^{\omega}_{p,F_0}(h_1,h_2)=0, the equivalence classes of fundamental sequences for the boundary elements h_1 and h_2 coincide. Hence, we conclude that the supports of h_1 and h_2 coincide.
(3) To justify (2.27), it remains to verify the reverse inclusion to (2.28):
Indeed, if x\,{\in} \bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'}, then, for each l\in\mathbb N, there exists x_l\in B_{\rho}(h,1/l) \cap D' such that simultaneously \rho^{\omega}_{p,F_0}(x_l,h)\to 0 as l\to\infty and (using Proposition 2.17 and extracting a subsequence if necessary) x_l\to x in the topology of the extended space \overline{\mathbb R^n}. Therefore, the fundamental sequence \{x_l\} with respect to the capacity metric determines a boundary element, which coincides with h. Thus, x\in \mathcal{S}_h and (2.29) is established. The inclusions (2.28) and (2.29) are equivalent to (2.27). This proves the proposition.
Proposition 2.26. The support \mathcal{S}_h of each boundary element h\in H^\omega_{\rho,p}(D') is connected in the topology of the space \overline{\mathbb R^n}.
Proof. Assume on the contrary that, for some boundary element h\in H^\omega_{\rho,p}(D'), there are two disjoint open sets V,W\subset\overline{\mathbb R^n} with \mathcal{S}_h\subset V\cup W, while \mathcal{S}_h\cap V\ne\varnothing and \mathcal{S}_h\cap W\ne\varnothing. Take two points x\in\mathcal{S}_h\cap V and y\in\mathcal{S}_h\cap W and fundamental sequences \{x_m\},\{y_m\}\in h with respect to the capacity metric such that x_m\to x and y_m\to y as m\to\infty. There is a curve \gamma_m\subset D' with endpoints x_m and y_m such that \operatorname{cap}((\gamma_m, F_0); L^1_p(D';\omega))\to 0 as m\to\infty. For all big enough m, starting with some there exists a point z_m\in \gamma_m satisfying z_m\notin V\cup W. We emphasize that the sequence \{z_m\}, fundamental with respect to the capacity metric, belongs to the equivalence class h. Extracting a subsequence, we may assume that z_m\to z_0, where z_0\in \overline{D'}\setminus (V\cup W); here, the closure is taken in the topology of the extended space \overline{\mathbb R^n}. Since z_0\notin \mathcal{S}_h, we arrive at a contradiction with the definition of the support of a boundary element. Proposition 2.26 is proved.
Proposition 2.27. Consider the support \mathcal{S}_h of h\in H^\omega_{\rho,p}(D'). For every sequence \{x_m\}\in h we have the convergence x_m\to \mathcal{S}_h as m \to \infty in the topology of the extended space \overline{\mathbb R^n}.
Proof. Proposition 2.25 excludes the possibility that \mathcal{S}_h\cap D'\ne\varnothing.
Suppose that \mathcal{S}_h is bounded in \mathbb R^n and \mathcal{S}_h\subset \partial D'. Suppose that there exists a subsequence \{x_{m_k}\in D'\}, for k\in \mathbb N, of some fundamental sequence \{x_m\}\in h such that d(x_{m_k},\mathcal{S}_h) \geqslant\alpha> 0 for all k\in \mathbb N, where \alpha is some constant. Then the sequence \{x_{m}\} has an accumulation point at some positive distance from \mathcal{S}_h. This point must lie in the support of the boundary element h, which contradicts the connectedness of \mathcal{S}_h.
However, if the support \mathcal{S}_h is unbounded and the sequence x_m does not converge to \mathcal{S}_h in the topology of the extended space \overline{\mathbb R^n}, then \varliminf_{\,m\to\infty}x_m<\infty. Consequently, there exists a finite accumulation point at some positive distance from \mathcal{S}_h. As in the previous case, we arrive at a contradiction with the connectedness of \mathcal{S}_h. Proposition 2.27 is proved.
Proposition 2.28 (criterion for singleton support). Given a boundary element h\in H^\omega_{\rho,p}(D') of the domain D', the support \mathcal{S}_h amounts to a single point if and only if for all fundamental sequences \{x_m\},\{y_m\}\in h with respect to the capacity metric there exist curves \overline{x_m y_{m}}, for m\in \mathbb N, with \operatorname{diam}(\overline{x_m y_{m}}) \to 0 as m\to \infty.
Proof.Necessity. Suppose that \mathcal{S}_h=\{x_0\}. Assume on the contrary that there exist fundamental sequences \{x_m\} and \{y_m\} of class h with respect to the capacity metric converging to x_0, curves \gamma_{m} = \overline{x_m y_{m}} with
and on the other hand, (2.7) and (2.30) yield \rho^{\omega}_{p,F_0} (z_{m}, x_{m}) \to 0 as m\to \infty. Hence, we infer that the sequence \{z_{m}\}, for m\in \mathbb N, is fundamental with respect to the capacity metric and belongs to the boundary element h. On the other hand, there exists a subsequence \{z_{m_i}\}, for i\in \mathbb N, converging to some point z_0; moreover, (2.31) implies that z_0 \neq x_0. Since z_0\in \mathcal{S}_h by the definition of support, we arrive at a contradiction with its being a singleton.
Sufficiency. Assume on the contrary that there are two sequences \{x_m\}, \{y_m\} \in h fundamental with respect to the capacity metric and converging to distinct points x and y of the support \mathcal{S}_h. By the hypotheses, there exist curves \gamma_m = \overline{x_m y_m} such that \operatorname{diam} \gamma_m \to 0 as m \to \infty. In particular, \operatorname{diam} \gamma_m\,{\geqslant}\, d(x_m, y_m)\,{\to}\, d(x, y)\,{>}\,0 as m \to \infty, which, evidently, contradicts the property \operatorname{diam} \gamma_m \to 0 as m \to \infty inferred from the assumption, proving the proposition.
2.5. Continuous extension of mappings of class \mathcal{Q}_{p, q}(D',\omega;D) to the Euclidean boundary
In this section, we fix arbitrary numbers q and p satisfying n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant 2 for n=2.
In what follows, we define domains \mu-connected at boundary points.
Definition 2.29 (connectedness properties [16], [18]). (1) A domain D' is called locally connected at x \in \partial D' if for every neighbourhood U of x there is a neighbourhood V \subset U of this point such that V \cap D' is connected.
(2) An unbounded domain D' is called locally connected at \infty if for every neighbourhood U of \infty there is a neighbourhood V \subset U of this point such that V \cap D' is connected.
(3) A domain D' is called locally\mu-connected at x \in \partial D', where \mu\in\mathbb N, if for every neighbourhood U of x there is a neighbourhood V \subset U of this point such that V\cap D' consists of \mu connected components, each of which is locally connected at x. Observe that a domain D'locally1-connected at x \in \partial D' is precisely the domain D'locally connected at x \in \partial D'.
(4) An unbounded domain D' is called locally\mu-connected at \infty, where \mu\in\mathbb N, if for every neighbourhood U of \infty there is a neighbourhood V \subset U of this point such that V \cap D' consists of \mu connected components, each of which is locally connected at \infty. In the case \mu=1 we obtain the domain D'locally connected at \infty.
(5) A domain D' is called finitely connected at x \in \partial D' or x=\infty whenever it is \mu-connected at x for some \mu\in\mathbb N.
The following example demonstrates the appearance of domains which are multiply connected at boundary points.
Example 2.30 (slit ball). Let D' = B(0,1) \setminus (\{0\}\times[0,1)^{n-1}). It is not difficult to see that D' is locally 2-connected at each point x\in \{0\}\times(0,1)^{n-1}. If \omega= 1 is the trivial weight and p=n, then condition (2.37) is met for every point x\in \{0\}\times(0,1)^{n-1}, and x lies in the support of two distinct boundary elements h_{+},h_{-} \in H_{\rho,n}(D').
Let us present the methods of [16], Theorem 1.10, for describing connectedness alternative to Definition 2.29 and useful below.
Proposition 2.31. Given a domain D'\in \mathbb R^n and its boundary point x \in \partial D', the following statements are equivalent:
(1) D' is locally \mu-connected at x;
(2) for every neighbourhood U of x there exists a neighbourhood V \subset U of this point such that V \cap D' consists of \mu connected components, the boundary of each of which contains x;
(3) \mu is the smallest integer for which the following condition holds: given \mu + 1 sequences \{x_ {1, k}\}, \dots, \{x_ {\mu+1, k}\} of points in D' converging to x, if V is some neighbourhood of x, then there exists a connected component of V \cap D' including subsequences of two distinct sequences.
To obtain similar properties at \infty, we should use the stereographic projection to map the domain D' onto the unit sphere in \mathbb R^{n+1} with the point \infty going into the north pole, on which the property of local \mu-connectedness at \infty can be stated by analogy with the above.
Example 2.32. On the plane \mathbb R^2, consider the complement
as the domain D'. We fix two numbers \alpha>-2 and p\in (1,2] with p-2>\alpha, as well as a continuum F_0\subset B(0, 4)\setminus \overline{B(0, 2)} with non-empty interior. As the weight function \sigma\colon B(0, 4)\to(0,\infty), we take
where \omega is the weight function of example 2.7.
The domain D' is obviously 4-connected at 0: each intersection B(0,r)\cap D', for r\in (0,2), consists of 4 connected components. We denote them by V_1 and V_3 if x_1\cdot x_2>0 and by V_2 and V_4 otherwise.
It is natural to define the weighted capacity of the condenser \mathcal E=(\{0\},F_0)\subset D' in the space L^1_p(D';\sigma) with respect to the connected component V_i as
where the infimum is over all functions u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega) such that u|_{B(0,r)\cap V_i}\equiv1 for some r>0, depending on u, and u|_{F_0}\equiv0.
On account of Example 2.7, the capacity of the point 0 with respect to V_1 and V_3 is positive, and with respect to V_2 and V_4 it vanishes.
This example motivates the following definition.
Definition 2.33. Suppose that a domain D' is locally \mu-connected at a boundary point x\in \partial D' and denote by V_1,V_2,\dots,V_\mu the distinct connected components of B(x,r)\cap D', where r\in(0,r_0) for sufficiently small r_0>0, whose boundaries contain x. Next, we define the weighted capacity of the condenser \mathcal E=(\{x\},F_0)\subset D' in the space L^1_p(D';\omega) with respect to the connected component V_i by
where the infimum is over all functions u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega) such that u|_{B(x,r)\cap V_i}\equiv1 for some r\in (0,r_0), depending on u, and u|_{F_0}\equiv 0.
If \mu=1, then instead of notation (2.33) we will simply write
In the case x=\infty, the lower bound in (2.33) is taken over all functions u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega) such that u|_{(\mathbb R^n\setminus B(x,r))\cap V_i}\equiv1 for some r>0, depending on u, and u|_{F_0}\equiv0, and denoted by
holds at x_0, then the boundary elements h_1 and h_2\in H^\omega_{\rho,p}(D') of the domain D' whose supports \mathcal{S}_{h_1} and \mathcal{S}_{h_2} meet at x_0 cannot be distinct: h_1=h_2.
(2) Suppose that the domain D' is locally \mu-connected at x_0, and that at x_0 condition (2.35)
holds for all i=1,\dots,\mu. Then the boundary elements h_1,h_2,\dots,h_\mu,h_{\mu+1} \in H^\omega_{\rho,p}(D') of D' whose supports \mathcal{S}_{h_1},\mathcal{S}_{h_2},\dots,\mathcal{S}_{h_\mu},\mathcal{S}_{h_{\mu+1}} share the point x_0 cannot be distinct: at least two of them coincide.
Proof. (1) Suppose that the supports \mathcal{S}_{h_1} and \mathcal{S}_{h_2} of two boundary elements h_1,h_2\in H^\omega_{\rho,p}(D') of D' meet at x_0. Take two arbitrary sequences \{x_k\}\in h_1 and \{y_k\}\in h_2 fundamental with respect to the metric \rho^{\omega}_{p,F_0} such that x_k\to x_0 and y_k\to x_0 as k\to\infty. Since D' is locally connected at x_0, we can connect x_k and y_k with curves \gamma_k = \overline{x_k y_k} such that \operatorname{diam}\gamma_k \to 0 as k\to\infty. Since D' is locally connected at x, condition (2.37) also yields
Hence, we see that the sequence \{x_k\} and \{y_k\} are equivalent, which implies h_1\,{=}\,h_2.
(2) Assume that the supports \mathcal{S}_{h_1},\mathcal{S}_{h_2},\dots,\mathcal{S}_{h_{\mu+1}} of some boundary elements h_1,h_2,\dots,h_{\mu+1}\,{\in}\, H^\omega_{\rho,p}(D'), for \mu\in \mathbb N, of D' meet at x_0. Take an arbitrary fundamental sequence \{x_{ik}\}\in h_i with respect to the metric \rho^{\omega}_{p,F_0} such that x_{ik}\to x_0 as k\to\infty, for i=1,\dots,\mu+1. By claim (3) of Proposition 2.31, since D' is locally \mu-connected at x_0, there exists a connected component V_{i_0}, for 1\leqslant i_0\leqslant \mu_0, of the intersection B(x_0,r)\cap D' containing subsequences, for instance, x_{1k_j} and x_{2l_j}, for j\in \mathbb N, of two distinct sequences x_{1k} and x_{2k}, for k\in \mathbb N. Since the connected component V_{i_0} is locally connected at x_0 and
the hypotheses of claim 1 hold, which yields h_1=h_2. This proves the corollary.
Definition 2.35 (associated support and connected components). Consider some boundary element h \in H^\omega_{\rho,p}(D') whose support \mathcal{S}_h contains x\in \partial D' such that the domain D' is \mu-connected at x, while \{y_{m}\} is a fundamental sequence with respect to the metric \rho^{\omega}_{p,F_0} belonging to the boundary element h and converging to x in the topology of \overline{\mathbb R^n}. Since D' is \mu-connected at x, there exists at least one connected component V_i of the intersection B(x,r)\cap D', where r>0 is a sufficiently small number, which contains some subsequence \{y_{m_k}\}, for k\in\mathbb N. In this case, say that the support \mathcal{S}_h of the boundary element h and the connected component V_i are associated with each other at x\in \mathcal{S}_h.
Proposition 2.36. The following claims hold.
(1) If D' is a locally \mu-connected domain at x, the support \mathcal{S}_h of some boundary element h \in H^\omega_{\rho,p}(D') contains x\in \partial D' and is associated with the connected component V_i at x, while the weighted capacity of x with respect to the connected component V_i vanishes,
(2) If D' is a locally \mu-connected domain at \infty, the support \mathcal{S}_h of some boundary element h \in H^\omega_{\rho,p}(D') contains \infty and is associated with the connected component V_i at \infty, while the weighted capacity of the point \infty with respect to some connected component V_i vanishes,
then, for every sequence \{ x_m \in V_i\cap D'\} of points, d(x_m,0) \to \infty implies that \{x_m\}\,{\in}\, h and (2.38) holds.
Proof. (1) Choose x\,{\in}\, \partial D' and a sequence \{x_m{\in}\, V_i\,{\cap}\, D'\} such that d(x_m,x)\,{\to}\, 0 as m \to \infty. Since V_i\cap D' is locally connected at x, see claim (2) of Proposition 2.31, we infer the existence of curves \overline{x_mx_{m+k}} with endpoints x_m and x_{m+k}, for k\geqslant1, such that \operatorname{diam} \overline{x_mx_{m+k}} \to 0 as m,k\to \infty. Since \operatorname{cap}((\{x\}, F_0); L^1_p(V_i,D';\omega))=0, Definition 2.33 yields \rho^{\omega}_{p,F_0} (x_m, x_{m+k})\to 0 as m,k\to \infty. Thus, on the one hand the sequence \{x_{m}\} is fundamental with respect to the metric \rho^{\omega}_{p,F_0}, and on the other, d(x_m,x) \to 0 as m\to \infty.
Now we take an arbitrary sequence \{y_{m}\in V_i\cap D'\}, for m\in\mathbb N, fundamental with respect to the metric \rho^{\omega}_{p,F_0}, belonging to some boundary element h, and converging x in the Euclidean metric. We claim that each fundamental sequence \{x_{m}\} with respect to the metric \rho^{\omega}_{p,F_0} satisfies
As in the previous argument, we conclude that \rho^{\omega}_{p,F_0} (x_m, y_m)\to 0 as m\to \infty. Thus, property (2.39) and property \{x_m\}\in h together with it are justified.
Applying (2.9), we deduce (2.38): indeed, the sequences \{f(x_m)\} and \{f(y_m)\} are equivalent with respect to the capacity metric function \rho_{q,f(F_0)} in the domain D. Hence, \{f(x_m)\}\in \widetilde f(h) and \rho_{q,f(F_0)} (f(x_m), \widetilde f(h))\to 0 as m \to \infty.
Theorem 2.37 (boundary behaviour of homeomorphisms). Consider a homeomorphism f \colon D'\to D of class \mathcal{Q}_{p, q}(D',\omega;D), where n-1<q\leqslant p\leqslant n for n\geqslant 3 and 1\leqslant q\leqslant p\leqslant 2 for n=2, as well as a weight function \omega\in L_{1,\mathrm{loc}}(D').
Suppose that the domain D'
(1) is locally \mu-connected at some boundary point y\in\partial D',
(2) the support \mathcal{S}_{h} of some boundary element h\in H^\omega_{\rho,p}(D') contains y,
(3) \operatorname{cap}((\{y\}, F_0); L^1_p(V_i,D';\omega))=0, where V_i is the connected component associated with the support \mathcal{S}_{h} at y.
Then the boundary behaviour of the mapping f \colon D'\to D at x\in\partial D' is
in the topology of the extended space \mathbb R^n.
Proof. We take a sequence \{y_m\in V_i\cap D'\} converging to y\in \partial D' as m\to\infty. Proposition 2.36 shows that \rho^{\omega}_{q,f(F_0)} (f(y_m),\widetilde f(h))\to 0 as m \to \infty. In addition, by Proposition 2.27 the sequence \{f(y_m)\} converges to the support \mathcal{S}_{\widetilde f( h)} in the topology of the extended space \mathbb R^n. The proof of Theorem 2.37 is complete.
Corollary 2.38 (continuous extension to boundary points). Consider a homeomorphism f \colon D'\to D of the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1< q\leqslant p\leqslant n for n\geqslant3 and 1\leqslant q\leqslant p\leqslant 2 for n=2, as well as a weight function \omega\in L_{1,\mathrm{loc}}(D').
Suppose also that
(1) the domain D' is locally \mu-connected at some boundary point y\in\partial D';
(2) the support \mathcal{S}_{h} of a boundary element h\in H^\omega_{\rho,p}(D') contains y;
(3) \operatorname{cap}((\{y\}, F_0); L^1_p(V_i,D';\omega))=0, where V_i is the connected component associated with the support \mathcal{S}_{h} at y;
(4) the support \mathcal{S}_{\widetilde f(h)} of the boundary element \widetilde f(h) amounts to a singleton: \mathcal{S}_{\widetilde f(h)}=\{x\}\in \partial D.
Then the mapping f \colon D'\to D extends by continuity to y\in\partial D' and
in the topology of the extended space \mathbb R^n. Since by the assumption the support \mathcal{S}_{\widetilde f( h)} of the boundary element \widetilde f(h) is a singleton, \mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D, the above implies that the sequence \{f(y_m)\} converges to x\in \partial D. The proof of Corollary 2.38 is complete.
Corollary 2.39 (continuous extension to the Euclidean boundary). Consider a homeomorphism f \colon D'\to D of the class \mathcal{Q}_{p, q}(D',\omega;D), where n-1< q\leqslant p\leqslant n for n\geqslant3 and 1\leqslant q\leqslant p\leqslant 2 for n=2, as well as a weight function \omega\in L_{1,\mathrm{loc}}(D'). The following claims hold:
(1) if D' is locally connected at y\in\partial D' and \operatorname{cap}((\{y\}, F_0); L^1_p(D';\omega))=0, then y lies in the support \mathcal{S}_{h} of some boundary element h\in H^\omega_{\rho,p}(D');
(2) if the support \mathcal{S}_{\widetilde f(h)} of the boundary element \widetilde f(h) is a singleton, \mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D, then the mapping f\colon D'\to D extends by continuity to y\in\mathcal{S}_{h} of the boundary element h\in H^\omega_{\rho,p}(D'), and
Proof. All hypotheses of Proposition 2.36 are obviously met, and so y lies in some boundary element h\in H^\omega_{\rho,p}(D'). The argument above and the hypotheses of the corollary ensure the fulfillment of the conditions of Corollary 2.38 for \mu=1. It shows that the mapping f \colon D'\to D extends by continuity to y\in\mathcal{S}_{h}, and the limit equals (2.40). Corollary 2.39 is proved.
Example 2.40 (a domain with non-trivial boundary elements). Let us consider D=(0,1)^2\setminus\bigcup_{k\in\mathbb{N}}I_k\subset \mathbb{R}^2, where I_k=[1/2,1) \times \{1/2^k\} determine the cuts. It is not difficult to see that I=[1/2,1)\times\{0\} is the support of a boundary element for p=2 and \omega\equiv1.
Example 2.41. For the domain from Example 2.18, the edge of the ridge
Remark 2.42. For the weight \omega and the domain D' such that the collection H^\omega_{\rho,p}(D') of boundary elements is independent of the choice of the continuum F_0, the support \mathcal{S}_h of an arbitrary boundary element h\in H^\omega_{\rho,p}(D') is independent of the choice of F_0, and consequently, all statements of this section are absolute.
§ 3. Moduli of curve families and homeomorphisms of class \mathcal Q_{p,q}(D',\omega)
Consider a domain D' in \mathbb{R}^{n}, where n \geqslant 2, a weight function \omega\colon D' \to (0, \infty) of class L_{1,\mathrm{loc}}, and a family \Gamma of (continuous) curves or paths \gamma\colon[a,b]\to D'.
Recall that, given a curve family \Gamma in D' and a real number p\geqslant 1, the weighted p-modulus of \Gamma is defined as
for all (locally) rectifiable curves \gamma \in \Gamma. In the case of trivial weight \omega \equiv 1 we write \operatorname{mod}_{p}(\Gamma) instead of \operatorname{mod}^1_{p}(\Gamma). Recall that the integral in (3.1) for a rectifiable curve \gamma\colon[a,b]\to D' is defined as
where l(\gamma) is the length of \gamma\colon[a,b]\to D', while \widetilde{\gamma}\colon[0,l(\gamma)]\to D' is its natural parametrization, that is, the unique continuous mapping with \gamma=\widetilde{\gamma}\circ S_{\gamma}, where S_{\gamma}\colon[a,b]\to[0,l(\gamma)] is the length function, defined at t\in [a,b] as S_{\gamma}(t)=l(\gamma\vert_{[a,t]}). If \gamma is only a locally rectifiable curve, then we put
with the least upper bound taken over all rectifiable subcurves \gamma'\colon [a', b'] \to D' of \gamma, where [a', b']\subset(a,b) and \gamma'= \gamma_{[a', b']}.
The functions \rho satisfying (3.1) are called admissible functions, or metrics, for the family \Gamma.
An equivalent description of the mappings of classes \mathcal Q_{p,q}(D',\omega;D) is obtained in [33] in the modular language: to this end, we should replace capacity in the definition of \mathcal Q_{p,q}(D',\omega;D) by the modulus of the curve family whose endpoints lie on the plates of the condenser.
Remark 3.1. It is observed in [32], § 4.4, that in the case q=p=n (n-1<q=p< n) the class of homeomorphisms \mathcal Q_{n,n}(D',\omega;D) (\mathcal Q_{p,p}(D',\omega;D)) is included into the class of \omega-homeomorphisms ((p, \omega)-homeomorphisms)4[x]4Note that [21] (and [59]) used the term Q-homeomorphism ((p, Q)-homeomorphism), where the letter Q stands for the weight function, while in this article the same letter in the term “\mathcal Q_{p,q}(D',\omega;D)-homeomorphism” is the first letter of the word “quasiconformal”. [21] (and [59]), defined via a controlled variation of the modulus of the curve family.
We will verify that, actually, the class \mathcal Q_{n,n}(D',\omega;D) coincides with the family of \omega-homeomorphisms of [21], § 4.1. Consider two domains D' and D in \mathbb{R}^{n}, where n \geqslant 2, and a function \omega\colon D' \to [1, \infty) of class L_{1,\mathrm{loc}}. Recall that a homeomorphism f\colon D' \to D is called an \omega-homeomorphism whenever
for each family \Gamma of paths in D' and every admissible function \rho for \Gamma. By [33], Theorem 19, the homeomorphisms satisfying (3.2) coincide with the homeomorphisms f\colon D'\to D of class \mathcal Q_{n,n}(D',\omega; D).
Some properties of the homeomorphisms of class \mathcal Q_{p,q}(D',\omega) were studied in [27] (for n-1<q<p=n, the value \Psi_{q,n}(U) instead of \Psi_{q,n}(U\setminus F), and \omega\equiv 1), [21], [60]–[64] (all for q=p=n and \omega=Q), [65], [66] (for 1<q=p<n and \omega=Q), and many others. In all articles mentioned except [27] the distortion of the geometry of condensers is stated in the language of moduli of curve families, which in a series of cases is a more restrictive characteristic than capacity as far as meaningful applications are concerned.
§ 4. Geometry the boundary
In this section, we consider geometric concepts and the main results of other approaches to the boundary behaviour problem.
Definition 4.1. The boundary \partial D' of a domain D' is called (p,\omega)-weakly flat at x_0 \in \partial D', where p > 1, if for every neighbourhood U of x_0 and every number \lambda > 0, there is a neighbourhood V \subset U of x_{0} such that for all continua5[x]5In this definition, the interior of F_0 can be empty.F_0 and F_1 in D', intersecting \partial U and \partial V, the capacity of the condenser \mathcal E=(F_1,F_0) satisfies \operatorname{cap} (\mathcal E; L_p(D',\omega)) \geqslant \lambda. The boundary \partial D' is called (p,\omega)-weakly flat whenever it is (p,\omega)-weakly flat at each of its points.
A point x_0 \in \partial D' is called (p,\omega)-strongly accessible, where p > 1, if for every neighbourhood U of x_0, there exist a neighbourhood V \subset U of this point, a compact set F_0 \subset D', and a number \delta > 0, such that for all continua F_1 in D' intersecting \partial U and \partial V the capacity of the condenser \mathcal E=(F_1,F_0) is bounded from below: \operatorname{cap} (\mathcal E; L_p(D',\omega)) \geqslant \delta. The boundary \partial D' is called (p,\omega)-strongly accessible whenever each of its points is (p,\omega)-strongly accessible.
In the unweighted case, for p = n, the properties of the boundary to be weakly flat and strongly accessible are introduced in [21], § 3.8, in terms of moduli of curve families. These conditions generalize properties P1 and P2 of [18], § 17, and the properties of the boundary to be quasiconformally flat and quasiconformally accessible [16]. The case of arbitrary p >n-1 is considered, for instance, in [67].
Proposition 4.2. Suppose that 1\leqslant p <\infty. If a domain D'\subset \mathbb{R}^n, where n\geqslant 2, has (p,\omega)-weakly flat boundary and \omega\in L_{1,\mathrm{loc}}(D'), then
(1) the boundary \partial D' is (p,\omega)-strongly accessible;
(2) D' is locally connected at the boundary points.
Proof. The proof follows is similar to that of Proposition 3.1 and Lemma 3.15 of [21] with obvious adjustments.
Remark 4.3. In the unweighted case the modulus and capacity coincide [68]–[70], and hence the properties of the boundary to be weakly flat and strongly accessible of [21] precisely coincide with the case of trivial weight and p = n in Definition 4.1 of (n,1)-weakly flat and (n,1)-strongly accessible boundary.
Moreover, a point x_0\in \partial D' is (n,1)-strongly accessible whenever it is quasiconformally accessible [16], Definition 1.7: given a neighbourhood U of x_0, there are a continuum F_0 \subset D' and a number \delta > 0 such that \operatorname{cap} ((F_1,F_0); L^1_p(D',\omega)) \geqslant \delta for all connected sets F_1 in D' satisfying x_0\in\overline F_1 and F_1 \cap \partial U \neq \varnothing.
Note the following connection between the singleton support of a boundary element and the above conditions on the geometry of the boundary.
Proposition 4.4. Given a weight \omega and a domain D' satisfying Remark 2.42, let h\in H^\omega_{\rho,p}(D') a boundary element and let a point x_0\in S_h be (p,\omega)-strongly accessible in the sense of Definition 4.1. Then \mathcal{S}_h = \{x_0\}.
Proof. Assume on the contrary that x_0 is (p,\omega)-strongly accessible and there exists a point y_0 \in \mathcal{S}_h with d(x_0,y_0)\geqslant \alpha>0. By the definition of the support of a boundary element, there exist fundamental sequences \{x_m \,{\in}\, D'_{\rho,p}\} and \{y_m \,{\in}\, D'_{\rho,p}\} with respect to the metric \rho^{\omega}_{p,F_0} such that x_m \to x_0 and y_m\to y_0 in the topology of the extended Euclidean space. We fix a neighbourhood V \subset U = B(x_0,\alpha/3) of x_0, a compact set F_0 \subset D', and a number \delta > 0 according to Definition 4.1. Find a number m_0 such that x_m \in V and y_m \in B(y_0,\alpha/3) for all m\geqslant m_0. It is obvious that for m\geqslant m_0 every curve \overline{x_m y_m} crosses \partial V and \partial U, and so, since the image of the curve is a continuum, the definition of strong accessibility yields \operatorname{cap}((\overline{x_m y_m},F_0); L_p(D',\omega)) \geqslant \delta.
By the definition of the capacity metric (2.7), among the mentioned continua with endpoints x_m \in V and y_m \in B(y_0,\alpha/3). there is \gamma_m = \overline{x_m y_m} such that
On the other hand, x_0, y_0 \in \mathcal{S}_h implies that the sequences \{x_m \in D'_{\rho,p}\} and \{y_m \in D'_{\rho,p}\} are equivalent. Therefore, \rho^{\omega}_{p,F_0}(x_m, y_m) \to 0, which contradicts (4.1). Proposition 4.4 is proved.
Corollary 4.5 of Theorem 2.19 ([25], [26], Chap. 5, Theorem 1.3, [17], Theorem 10.4). Consider two domains D and D' in \mathbb{R}^n, where n \geqslant 2. Every quasiconformal mapping f\colon D' \to D admits a homeomorphic extension to the capacity boundary
Proof. By Definition 1.4, the quasiconformal mapping belongs to \mathcal{Q}_{n,n}(D',1;D). The claim follows directly from Theorem 2.22.
Corollary 4.6 of Theorem 2.38. Consider two domains D and D' in \mathbb{R}^n, where n \geqslant 2, and a homeomorphism f\colon D' \to D satisfying one of the following conditions:
(1) f is quasiconformal, D' is locally connected on the boundary, and \partial D is quasiconformally accessible [16], Theorem 2.4.
(2) f\in\mathcal Q_{n,n}(D',\omega;D), in particular, f is an \omega-homeomorphism in the sense of Remark 3.1, for6[x]6That is, \omega is the restriction to D' of some function \overline{\omega} \in \mathrm{BMO}(U), where U is an open set with U \supset \overline{D'}.\omega\in \mathrm{BMO}(\overline{D'}), D' is locally connected on the boundary, and \partial D is (n,1)-strongly accessible [21], Lemma 5.3.
Then f admits a continuous extension \overline f \colon \overline{D'} \to \overline{D} to the boundary.
Proof. Verify that the hypotheses of Corollary 2.39 hold in both cases, and so f\colon D' \to D extends by continuity to the closure \overline{D'}.
In case (1), for every point x\in \overline{D'} we have \operatorname{cap}((\{x\}, F_0); L^1_n(D'))=0. Since every quasiconformal mapping is of class \mathcal{Q}_{n,n}(D',1;D), it remains to verify that if x\in\mathcal{S}_{h} and h\in H_{\rho,n}(D'), then the support \mathcal{S}_{\widetilde f(h)} of the boundary element \widetilde f(h) is a singleton, where \widetilde f is the extension of f of Theorem 2.19. The latter follows from the quasiconformal accessibility of \partial D, Proposition 4.4, and Remark 4.3. The possibility of extending the mapping f by continuity to \partial D' follows from Corollary 2.39.
In case (2), we observe first that \operatorname{cap}((\{x\}, F_0); L^1_p(D';\omega))\,{=}\,0 for every boundary point x\in \partial D' (see Example 2.9), and this property is local. Hence, it is independent of the continuum F_0. Moreover, by Remark 3.1, the \omega-homeomorphism f belongs to \mathcal{Q}_{n,n}(D',\omega;D). As above, Proposition 4.4 shows that the support \mathcal{S}_{\widetilde f(h)} of the boundary element \widetilde f(h) is a singleton, and Corollary 2.39 guarantees the required result. Corollary 4.6 is proved.
Remark 4.7. In the planar case, n=2, the capacity boundary H_{\rho,2} with respect to the Sobolev class L^1_2 is homeomorphic to the boundary of prime ends, see [71], for instance. In the space \mathbb{R}^n, where n\geqslant 3, it is known that for the domains quasiconformally equivalent to a domain with locally quasiconformal boundary, called regular domains, the completion in the prime ends topology is equivalent to the completion in the modular [17] and capacity [26] metrics.
Example 4.8. Consider the domain D' = [0,1]^3 \subset \mathbb{R}^3, the weight \omega(y) = y_1^{\beta} with \beta>-3, and the ridge domain from Example 2.18:
Theorem 1.6 shows that f is of the class \mathcal{Q}_{3,3}(D',\omega;D) and Theorem 2.19 can be applied to it: there exists a continuous extension f\colon (\widetilde{D}'_{\rho,3},\widetilde\rho^{\,\omega}_{3,F_0}) \to(\widetilde{D}_{\rho,3},\widetilde\rho_{3,f(F_0)}).
As far as the authors are aware, this example cannot be handled in the framework of other articles concerning boundary correspondence. For instance, [13], [22] require that the boundary of the domain D be (n,1)-strongly accessible. In the case of D under consideration, the ridge is neither (n,1)-weakly flat nor (n,1)-strongly accessible for \alpha>2. Indeed, [16], Example 5.5, shows that the points on the ridge are quasiconformally accessible if and only if 1<\alpha<2 and are not quasiconformally flat for any \alpha>1. In addition, it is not difficult to verify that necessary conditions for the ridge to be quasiconformally flat and quasiconformally accessible are also necessary for the ridge to be (n,1)-weakly flat and (n,1)-strongly accessible, see [16], Theorems 5.3, 5.4.
§ 5. Applications
In this section, we apply the results on boundary behaviour to the homeomorphisms of certain classes \mathcal Q_{p,q}(D',\omega;D) considered in the examples of this article.
The original homeomorphism f\colon D'\to D has the following properties:
(6) it is of class \mathcal Q_{p,p}(D',\omega;D) with the constant K_p=1 [31], Corollary 26, and the weight function \omega\in L_{1,\mathrm{loc}}(D') defined as
is bounded, where p'=p/(p-(n-1)) and \theta(y)=\omega^{-(n-1)/(p-(n-1))}(y).
Proposition 5.1. The results of this article concerning the boundary behaviour of homeomorphisms, namely, Theorems 2.19 and 2.37, Corollaries 2.38 and 2.39, are applicable to the mapping f of § 5.1.
Explicitly, for n\leqslant s < n+1/(n-2) the homeomorphism f introduced above has the following properties:
(1) the mapping f induces a Lipschitz mapping f\colon ({D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) \to({D}_{\rho,p},\widetilde\rho_{p,f(F_0)}) of metric spaces: \widetilde\rho_{p,f(F_0)}(f(x),f(y))\leqslant \widetilde\rho^{\,\omega}_{p,F_0}(x,y) for all points x,y\in {D}'_{\rho,p};
(2) the mapping f induces a Lipschitz mapping \widetilde f\colon ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) \to({\widetilde D}_{\rho,p},\widetilde\rho_{p,f(F_0)}) of “completed” metric spaces:
to X\in( {\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) associate \widetilde f(X)\in ({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}), which contains the fundamental sequence \{f(x_l)\}, where \{x_l\}\in X:
(3) the restriction \widetilde f\mid_{H^\omega_{\rho,p}(D')}\colon (H^\omega_{\rho,p}(D'), \widetilde\rho^{\,\omega}_{p,F_0})\to (H_{\rho,p}(D), \widetilde\rho_{p,f(F_0)}) is a Lipschitz mapping of capacity boundaries;
(4) if the domain D' is locally \mu-connected at a boundary point y\in\partial D', the support \mathcal{S}_{h} of the boundary element h\in H^\omega_{\rho,p}(D') contains y, and
where V_i is the connected component associated with \mathcal{S}_{h} at y, then f(z)\to \mathcal{S}_{\widetilde f(h)} as z\to y with z\in V_i\cap D' in the topology of the extended space \mathbb R^n;
(5) if the domain D' is locally \mu-connected at a boundary point y\in\partial D', the support \mathcal{S}_{h} of the boundary element h\in H^\omega_{\rho,p}(D') contains y and
where V_i is the connected component associated with \mathcal{S}_{h} at y and \mathcal{S}_{\widetilde f(h)}=\{x\}\in \partial D, then the mapping f \colon D'\to D extends by continuity to y\in\partial D' and
then y lies in the support \mathcal{S}_{h} of some boundary element h\in H^\omega_{\rho,p}(D');
(7) if \mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D, then the mapping f \colon D'\to D extends by continuity to y\in\mathcal{S}_{h} of the boundary element h\in H^\omega_{\rho,p}(D') and
Let us compare the above example with the mapping of [72], which considers a W^{1}_{1, \mathrm{loc}}-homeomorphism f\colon D' \to D with finite distortion, whose outer distortion function
Verify that this mapping is a particular case for s=n of the scale mapping considered above: f\in W^1_{n-1, \mathrm{loc}}(D') with the distortion function (5.1). To this end, we have to show that the W^{1}_{1, \mathrm{loc}}-homeomorphism f\colon D' \to D is of class f\in W^1_{n-1, \mathrm{loc}}(D'). To verify the last property, observe that f induces the composition operator
in the sense that u\circ f \in L^1_{n-1, \mathrm{loc}}(D') for every function u\in L^1_{n}(D)\cap \operatorname{Lip}_{\mathrm{loc}}(D).
Indeed, consider a compactly embedded domain U\Subset D'. Take u\in {L}^1_n(f(U)) \cap \operatorname{Lip}_{\mathrm{loc}}(f(U)). The composition u\circ f clearly lies in \mathrm{ACL}(U). Let us show that the derivatives of the composition are integrable. We can find the derivative of the composition as
provided that f(y) is a point of differentiability of u and \partial (u\circ f)(y)/\partial y_i=0 otherwise because in this case, y\in Z' and Df(y)=0 a.e. Since the distortion function (5.3) is of class L_{(n-1)n}(U), we have
To change from (5.4) to (5.5), we use Hölder’s inequality with the summability exponents n/(n-1) and n.
Furthermore, we note that f(U) is a bounded open set, so that the coordinate function u_j(x)\mapsto x_j lies in L^1_n(f(U)). By (5.4), (5.5) the composition (u_j\circ f)(y)=f_j(y) for y\in D' is of class f_j\in L^1_{n-1, \mathrm{loc}}(D'), for j=1,\dots,n, while the mapping f\colon D'\to D is of class W^1_{n-1, \mathrm{loc}}(D').
Therefore, the mapping of [72] satisfies all hypotheses of Example 1.13 with s=n, and thus, the claim of Proposition 5.1 holds for it.
Consider the mapping of Example 1.16 in the case that it is a homeomorphism. Then we have some homeomorphism f\colon D'\to D of class \mathcal{OD}(D';s,r;\theta,1), where n-1< s\leqslant r<\infty, with outer bounded \theta-weighted (s,r)-distortion, meaning that
is of class L_{\rho}(D'), where \rho is found from the condition 1/\rho = 1/s-1/r and \rho = \infty for s=r.
Proposition 5.2. On assuming that \omega(x)=\theta^{-(n-1)/(s-(n-1))}(x) is locally integrable, the homeomorphism f\colon D'\to D of class \mathcal{OD}(D';s,r;\theta,1), where n\leqslant s \leqslant r < n+ 1/(n+2), belongs to the family \mathcal Q_{p,q}(D',\omega;D), where q=r/(r-(n-1)) and p=s/(s-(n-1)) with n-1<q\leqslant p\leqslant n. Furthermore, the factors in the right-hand side of (1.8) are equal to K_p=\|K_{r,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\infty}(D')\|^{n-1} for q=p and
Therefore, Theorems 2.22 and 2.37 concerning boundary behaviour and their Corollaries 2.38 and 2.39 apply to the mapping f\colon D'\to D. In particular, applying Corollary 2.39, we obtain the following proposition.
Proposition 5.3. Under the hypotheses of Proposition 5.2, assume that
(1) the domain D' is locally connected at every point y\in\partial D' and
(2) the support \mathcal{S}_{\widetilde f(h)} of the boundary element \widetilde f(h) is a singleton: \mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D, where h\in H^\omega_{\rho,p}(D') is the boundary element containing \{y\}.
Then we obtain an extension by continuity of the homeomorphism f \colon D'\to D at the point y of the support \mathcal{S}_{h} of the boundary element h\in H^\omega_{\rho,p}(D') such that
A similar result is obtained in [67], Theorem 2, under stronger restrictions: f\in W^1_{s,\mathrm{loc}}(D'), and so n-1< s, condition (1) holds, but instead of condition (2) it is assumed that the points x\in\partial D are q-strongly accessible for q=r /(r- (n- 1)). Recall that under this condition the support \mathcal{S}_{h} of x\in h is a singleton, see Proposition 4.4. Therefore, the fulfillment of the hypotheses of Theorem [67], Theorem 2, ensures that conditions (1) and (2) above hold. Then, there exists a continuous extension of the mapping f \colon D'\to D to the Euclidean boundary.
Proposition 5.4. Assume the hypotheses of Proposition 5.2. If the domain D' is locally connected at the boundary, while the boundary \partial D is q-weakly flat for q=r /(r-(n-1)), then the mapping f^{-1} admits a continuous extension \widetilde{f}^{-1}\colon\overline{D} \to \overline{\mathbb{R}^{n}}.
Proof. Assume on the contrary that the mapping f^{-1} has no limit at some point x_{0} \in \partial D. Then there exist two distinct points y_1,y_2\in \partial D' and two sequences \{x_{1,k} \in D\}, \{x_{2,k} \in D\} such that
Choose two balls B_i=B(y_i, r_i), for i=1,2, satisfying \overline{B}_1 \cap \overline{B}_2=\varnothing. Since the domain D' is locally connected at the boundary, for the ball B_i there is a connected component of B_i \cap D' which includes U_i=B(y_i, \widetilde{r}_i) \cap D' for some \widetilde{r}_i \in(0, r_i), for i=1,2.
Consider a positive number h<\operatorname{dist}(B_1, B_2). By the subordination principle, Property 1.2, the piecewise linear function u defined as
is admissible for the condenser E'=(F_1',F_2') for every continuum F_i'\Subset B_i \cap D'. Let P be a number such that P > C \|u \mid L^1_p (D', \omega)\|, where C is the constant in (1.9).
By construction, x_{0} \in \overline{f(U_1)} \cap \overline{f(U_2)}. Suppose that V is a neighbourhood of x_{0} so small that
\begin{equation*}
f(U_i) \setminus V \neq \varnothing, \qquad i=1,2.
\end{equation*}
\notag
Since \partial D is q-weakly flat, for some neighbourhood W \subset V of x_{0} and some continuum F_i {\subset}\, f(U_i), for i\,{=}\,1,2, intersecting \partial V and \partial W, we have
\begin{equation*}
\operatorname{cap}^{1/q} ((F_1, F_2); L_q(D))\,{\geqslant}\, P.
\end{equation*}
\notag
Let F_i' be such that F_i'=f(F_i). Then the relations
\begin{equation*}
\begin{aligned} \, P &\leqslant \operatorname{cap}^{1/q}\bigl((F_1,F_2); L^1_q(D)\bigr) = \operatorname{cap}^{1/q}\bigl(f^{-1}(E'); L^1_q(D)\bigr) \\ &\leqslant C \operatorname{cap}^{1/p} (E'; L^1_p(D',\omega)) < P \end{aligned}
\end{equation*}
\notag
lead to a contradiction. Proposition 5.4 is proved.
Some results similar to Propositions 5.2–5.4 were obtained in [67], Theorem 1, under stronger restrictions: f\in W^1_{s,\mathrm{loc}}(D') and s>n-1.
Bibliography
1.
C. Carathéodory, “Über die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370
2.
W. F. Osgood and E. H. Taylor, “Conformal transformations on the boundaries of their regions of definition”, Trans. Amer. Math. Soc., 14:2 (1913), 277–298
3.
G. D. Suvorov, “On the prime ends of a sequence of plane regions converging to a nucleus”, Mat. sb., 33(75):1 (1953), 73–100; English transl. Amer. Math. Soc. Transl. Ser. 2, 1, Amer. Math. Soc., Providence, RI, 1955, 67–93
4.
D. B. A. Epstein, “Prime ends”, Proc. London Math. Soc. (3), 42:3 (1981), 385–414
5.
V. A. Zorich, “Correspondence of the boundaries in Q-quasiconformal mapping of a sphere”, Dokl. Akad. Nauk SSSR, 145:6 (1962), 1209–1212; English transl. Soviet Math. Dokl., 3 (1962), 1183–1186
6.
V. A. Zorič, “Determination of boundary elements by means of sections”, Dokl. Akad. Nauk SSSR, 164:4 (1965), 736–739; English transl. Soviet Math. Dokl., 6 (1965), 1284–1287
7.
A. Björn, J. Björn and N. Shanmugalingam, “The {D}irichlet problem for p-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities”, J. Differential Equations, 259:7 (2015), 3078–3114
8.
J. Milnor, Dynamics in one complex variable, Ann. of Math. Stud., 160, 3rd ed., Princeton Univ. Press, Princeton, NJ, 2006
9.
L. Rempe, “On prime ends and local connectivity”, Bull. Lond. Math. Soc., 40:5 (2008), 817–826
10.
G. D. Suvorov, Prime ends and sequences of plane mappings, Naukova Dumka, Kiev, 1986 (Russian)
11.
T. Adamowicz, A. Björn, J. Björn, N. Shanmugalingam, “Prime ends for domains in metric spaces”, Adv. Math., 238 (2013), 459–505
12.
T. Adamowicz, “Prime ends in metric spaces and quasiconformal-type mappings”, Anal. Math. Phys., 9:4 (2019), 1941–1975
13.
D. A. Kovtonyuk and V. I. Ryazanov, “Prime ends and Orlicz–Sobolev classes”, Algebra i Analiz, 27:5 (2015), 81–116; English transl. St. Petersburg Math. J., 27:5 (2016), 765–788
14.
T. Kuusalo, “Quasiconformal mappings without boundary extensions”, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 331–338
15.
E. C. Schlesinger, “Conformal invariants and prime ends”, Amer. J. Math., 80 (1958), 83–102
16.
R. Näkki, Boundary behaviour of quasiconformal mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A I, 484, Suomalainen Tiedeakademia, Helsinki, 1970
17.
R. Näkki, “Prime ends and quasiconformal mappings”, J. Anal. Math., 35 (1979), 13–40
18.
J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971
19.
M. Vuorinen, Exceptional sets and boundary behaviour of quasiregular mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 11, Suomalainen Tiedeakatemia, Helsinki, 1976
20.
M. Vuorinen, “On the boundary behaviour of locally K-quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 5:1 (1980), 79–95
21.
O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009
22.
E. A. Sevost'yanov, “Boundary behaviour and equicontinuity for families of mappings in terms of prime ends”, Algebra i Analiz, 30:6 (2018), 97–146; English transl. St. Petersburg Math. J., 30:6 (2019), 973–1005
23.
M. Cristea, “Boundary behaviour of the mappings satisfying generalized inverse modular inequalities”, Complex Var. Elliptic Equ., 60:4 (2015), 437–469
24.
S. K. Vodop'yanov, “On a boundary correspondence for quasiconformal mappings of three-dimensional domains”, Sibirsk. Mat. Zh., 16:3 (1975), 630–633; English transl. Siberian Math. J., 16:3 (1975), 487–490
25.
V. M. Gol'dšteĭn, S. K. Vodop'janov, “Metric completion of a domain by using a conformal capacity invariant under quasi-conformal mappings”, Dokl. Akad. Nauk SSSR, 238:5 (1978), 1040–1042; English transl. Soviet Math. Dokl., 19:1 (1978), 158–161
26.
S. K. Vodop'yanov, V. M. Gol'dshtein, and Yu. G. Reshetnyak, “On geometric properties of functions with generalized first derivatives”, Russian Math. Surveys, 34:1(205) (1979), 17–65; English transl. 34:1 (1979), 19–74
27.
V. I. Kruglikov, “Prime ends of spatial domains with variable boundaries”, Dokl. Akad. Nauk SSSR, 297:5 (1987), 1047–1050; English transl. Soviet Math. Dokl., 36:3 (1988), 565–568
28.
S. K. Vodop'yanov, “Regularity of mappings inverse to Sobolev mappings”, Mat. Sb., 203:10 (2012), 3–32; English transl. Sb. Math., 203:10 (2012), 1383–1410
29.
S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of \mathscr{Q}_p-homeomorphisms”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 21–25; English transl. Dokl. Math., 102:2 (2020), 371–375
30.
S. K. Vodop'yanov, “On the analytic and geometric properties of mappings in the theory of \mathscr Q_{q,p}-homeomorphisms”, Mat. Zametki, 108:6 (2020), 925–929; English transl. Math. Notes, 108:6 (2020), 889–894
31.
S. K. Vodopyanov Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299; English transl. Siberian Math. J., 61:6 (2020), 1002–1038
32.
S. K. Vodopyanov and A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. RAN. Ser. Mat., 85:5 (2021), 58–109; English transl. Izv. Math., 85:5 (2021), 883–931
33.
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Sibirsk. Mat. Zh., 62:6 (2021), 1252–1270; English transl. Siberian Math. J., 62:6 (2021), 1010–1025
34.
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Mat. Sb., 213:9 (2022), 3–33; English transl. Sb. Math., 213:9 (2022), 1157–1186
35.
S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056; Ј«. ЇҐа.: Siberian Math. J., 59:5 (2018), 805–834
36.
S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space W_{n-1}^1 with conditions on the distortion function”, Sibirsk. Mat. Zh., 59:6 (2018), 1240–1267; English transl. Siberian Math. J., 59:6 (2018), 983–1005
37.
A. D. Ukhlov, “On mappings generating the embeddings of Sobolev spaces”, Sibirsk. Mat. Zh., 34:1 (1993), 185–192; English transl. Siberian Math. J., 34:1 (1993), 165–171
38.
S. K. Vodop'yanov and A. D. Ukhlov, “Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups”, Sibirsk. Mat. Zh., 39:4 (1998), 776–795; English transl. Siberian Math. J., 39:4 (1998), 665–682
39.
S. K. Vodop'yanov and A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Izv. Vyssh. Uchebn. Zaved. Mat, 2002, no. 10, 11–33; English transl. Russian Math. (Iz. VUZ), 46:10 (2002), 9–31
40.
S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad. Gos. Univ., Leningrad, 1950 ; English transl. Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963
41.
V. G. Maz'ja, Sobolev spaces, Izdat. Leningrad. Gos. Univ., Leningrad, 1985 ; English transl. Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 ; Sobolev spaces. With applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, 2nd rev. and augm. ed., Springer, Heidelberg, 2011
42.
G. D. Mostow, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104; Russian transl. “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Matematika, 16:5 (1972), 105–157
43.
F. W. Gehring, “Lipschitz mappings and p-capacity of rings in n-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY 1969), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193
44.
Yu. G. Reshetnyak, Space mappings with bounded distortion, Nauka, Novosibirsk, 1982 ; English transl. Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989
45.
F. W. Gehring and J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114 (1965), 1–70
46.
H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen im Raum”, Comment. Math. Helv., 44 (1969), 284–307
47.
J. Lelong-Ferrand, “Étude d'une classe d'applications liées à des homomorphismes d'algébres de fonctions, et généralisant les quasi-conformes”, Duke Math. J., 40 (1973), 163–186
48.
S. K. Vodopyanov, “Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds”, Mat. sb., 210:1 (2019), 63–112; English transl. Sb. Math., 210:1 (2019), 59–104
49.
A. Molchanova and S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17
50.
J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993
51.
T. Rado and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955
52.
M. de Guzmán, Differentiation of integrals in \mathbb{R}^n, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975 ; Russian transl. Mir, Moscow, 1978
53.
S. K. Vodop'yanov and A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Mat. Tr., 6:2 (2003), 14–65; English transl. Siberian Adv. Math., 14:4 (2004), 78–125
54.
S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavkaz. Mat. Zh., 24:4 (2022), 58–69
55.
D. V. Isangulova and S. K. Vodopyanov, “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96
56.
Yu. G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Sibirsk. Mat. Zh., 10:5 (1969), 1109–1138; English transl. Siberian Math. J., 10:5 (1969), 818–842
57.
G. Ye. Shilov, Mathematical analysis. A special course, Fizmatlit, Moscow, 1961 ; English transl. Pergamon Press, Oxford–New York–Paris, 1965
58.
F. Hausdorff, Set theory, Transl. from the German, 2nd ed., Chelsea Publishing Co., New York, 1962
59.
R. R. Salimov and E. A. Sevost'yanov, “ACL and differentiability of open discrete ring (p, Q)-mappings”, Mat. Stud., 35:1 (2011), 28–36
60.
V. I. Ryazanov and E. A. Sevost'yanov, “Equicontinuity of mean quasiconformal mappings”, Sibirsk. Mat. Zh., 52:3 (2011), 665–679; English transl. Siberian Math. J., 52:3 (2011), 524–536
61.
R. R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. RAN. Ser. Mat., 72:5 (2008), 141–148; English transl. Izv. Math., 72:5 (2008), 977–984
62.
R. Salimov, “ACL and differentiability of Q-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301
63.
R. R. Salimov and E. A. Sevost'yanov, “The theory of shell-based Q-mappings in geometric function theory”, Mat. sb., 201:6 (2010), 131–158; English transl. Sb. Math., 201:6 (2010), 909–934
64.
E. Sevost'yanov, S. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions, 2018, arXiv: 1801.01808v9
65.
R. R. Salimov and E. A. Sevost'yanov, “On local properties of spatial generalized quasi-isometries”, Mat. Zametki, 101:4 (2017), 594–610; English transl. Math. Notes, 101:4 (2017), 704–717
66.
R. Salimov, “On Q-homeomorphisms with respect to p-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213
67.
M. V. Tryamkin, “Boundary correspondence for homeomorphisms with weighted bounded (p,q)-distortion”, Mat. Zametki, 102:4 (2017), 632–636; English transl. Math. Notes, 102:4 (2017), 591–595
68.
J. Hesse, “A p-extremal length and p-capacity equality”, Ark. Mat., 13:1-2 (1975), 131–144
69.
V. A. Shlyk, “The equality between p-capacity and p-modulus”, Sibirsk. Mat. Zh., 34:6 (1993), 216–221; English transl. Siberian Math. J., 34:6 (1993), 1196–1200
70.
H. Aikawa and M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–88
71.
V. Gol'dshtein and A. Ukhlov, Boundary values of functions of Dirichlet spases L^1_2 on capacitary boundaries, 2014, arXiv: 1405.3472
72.
E. Afanas'eva, V. Ryazanov, R. Salimov, and E. Sevost'yanov, “On boundary extension of Sobolev classes with critical exponent by prime ends”, Lobachevskii J. Math., 41:11 (2020), 2091–2102
Citation:
S. K. Vodopyanov, A. O. Molchanova, “The boundary behavior of \mathcal Q_{p,q}-homeomorphisms”, Izv. Math., 87:4 (2023), 683–725
This publication is cited in the following 4 articles:
S. K. Vodopyanov, S. V. Pavlov, “O granichnykh znacheniyakh v geometricheskoi teorii funktsii v oblastyakh s podvizhnymi granitsami”, Sib. matem. zhurn., 65:3 (2024), 489–516
Nataliya Ilkevych, Evgeny Sevost'yanov, Alexander Ukhlov, “On the Equicontinuity of Generalized Quasiconformal Mappings by Prime Ends”, Complex Anal. Oper. Theory, 18:4 (2024)
S. K. Vodopyanov, D. A. Sboev, “Semicontinuity under Convergence of Homeomorphisms in L_{1,\operatorname{loc}} of the Operator Distortion Function”, Sib Math J, 65:4 (2024), 737
S. K. Vodopyanov, D. A. Sboev, “Polunepreryvnost operatornoi funktsii iskazheniya pri skhodimosti gomeomorfizmov v L_{1, \mathrm{loc}}”, Sib. matem. zhurn., 65:4 (2024), 605–621