Известия Российской академии наук. Серия математическая
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Российской академии наук. Серия математическая, 2023, том 87, выпуск 4, страницы 47–90
DOI: https://doi.org/10.4213/im9376
(Mi im9376)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms

S. K. Vodopyanova, A. O. Molchanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b University of Vienna, Vienna, Austria
Список литературы:
Аннотация: This article studies systematically the boundary correspondence problem for $\mathcal Q_{p,q}$-homeomorphisms. The presented example demonstrates a deformation of the Euclidean boundary with the weight function degenerating on the boundary.
Bibliography: 72 titles.
Ключевые слова: quasiconformal analysis, Sobolev space, composition operator, capacity of a condenser, capacity metric, capacity boundary.
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации FWNF-2022-0006
EU Framework Programme for Research and Innovation 847693
This article is prepared in fulfillment of the state contract of the Ministry of Education and Science of the Russian Federation for the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (Project № FWNF-2022-0006). A. Molchanova was supported by the European Unions Horizon 2020 research and innovation programme under the Marie Składowska-Curie grant agreement № 847693.
Поступило в редакцию: 11.05.2022
Исправленный вариант: 06.10.2022
Англоязычная версия:
Izvestiya: Mathematics, 2023, Volume 87, Issue 4, Pages 683–725
DOI: https://doi.org/10.4213/im9376e
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.518+517.54
MSC: 30C65, 47B33, 46E35
Язык публикации: английский

Introduction

In this section, we briefly survey the articles dealing with the boundary behavior of mappings in quasiconformal analysis. Consider two domains $D,D' \subset \mathbb R^2$ bounded by Jordan curves and a conformal mapping $f\colon D \to D'$. The classical result, established independently by Carathéodory [1] and Osgood and Taylor [2], asserts that $f$ extends to the boundary, giving a homeomorphism $\overline{f}\colon \overline{D} \to \overline{D'}$. The Jordan condition for the boundary is necessary, which is easy to see in the example of a slit disk. Nevertheless, a homeomorphic extension is possible for some generalized boundary accounting for the geometry of the domain. This construction, introduced by Carathéodory [1] and called the prime end boundary, initiated intensive applications of the geometric approach to study the boundary behavior of mappings.

Carathéodory’s prime end theory received developments on the plane $\mathbb{R}^2$ [3], [4] and in the space $\mathbb{R}^n$ for $n> 2$ [5], [6], in studying Dirichlet problems for elliptic equations [7], and in the theory of dynamical systems [8], [9]. For more detailed surveys of the available results and literature, see [10]–[13].

A natural development of these questions is to study the boundary behavior of quasiconformal mappings in space. It requires a more refined analysis of the geometric properties of domains. Indeed, in the higher-dimensional case there exist a Jordan domain and a quasiconformal mapping admitting no homeomorphic extension to the boundary of this domain [14]. In some questions it turned out helpful to describe the geometric properties of domains using the concept of modulus of a curve family [15]. With that, a simple classification of boundary points was introduced: for instance, the properties of the boundary to be quasiconformally flat or quasiconformally accessible in [16], [17], or properties $P1$ and $P2$ of [18]. This approach became widely used in the last decade to study the geometric properties of mappings. Let us mention only some articles concerning the boundary correspondence of quasiconformal mappings [19], [20], $Q$-homeomorphisms, see the book [21] and the articles [13], [22] (a more detailed discussion appears in Section 4), as well as the mappings satisfying generalized modular inequalities [23].

An alternative functional-geometric approach to study the boundary behavior of quasiconformal mappings is based on the relation between the Euclidean geometry of the domain and the functional space $L^1_n$ via the concept of the variational capacity of a condenser. This approach was founded in [24]–[26] and applied also to studying mappings which are not quasiconformal [27]. As [17] shows, the functional- geometric approach can be interpreted in the language of moduli of curve families.

The three main approaches to the boundary behavior of mappings, using prime ends, geometric description, and functional-geometric definition, form an hierarchy, as each of them adequately describes the boundary behavior of certain classes of mappings. This article studies the problem of boundary correspondence for $\mathcal Q_{p,q}$-homeomorphisms, whose fundamental properties were established in [29]–[34]. To this end, we complete the domains in special capacity metrics on the image and the preimage, associated with the geometry of a suitable Sobolev class. The elements adjoined to the domain in the completion of the corresponding metric space constitute an improper boundary, which we call the capacity boundary $H_{\rho}$.

In § 2 the study of the boundary behavior of the homeomorphism $f\in\mathcal Q_{p,q}$ defined in § 1 consists in:

(1) continuing $f$ to the capacity boundary $H_{\rho}$, with the main result stated as Theorem 2.22;

(2) establishing a connection between the elements of the capacity boundary and the points of the Euclidean boundary of the domain, see Theorem 2.37 and Corollaries 2.38 and 2.39.

In § 3 we compare the approaches stated in the languages of moduli and capacity. In § 4 we contrast the conclusions of this article with the main results of other approaches to the problem of boundary behavior of mappings. Some applications of our results are given in § 5.

This article naturally enters the line of publications [28]–[36], preceded by the results of [37]–[39] and the articles cited in the bibliographies in [28]–[34] and arising on the crossroads of the theory of Sobolev function spaces [40], [41] and geometric theory of functions [18], [42]–[48]. Some results of this series of articles have found applications in nonlinear elasticity, see [49].

§ 1. Classes of $\mathcal Q_{p,q}$-homeomorphisms

In what follows $D$ and $D'$ stand for domains (open connected sets) in $\mathbb{R}^n$. The norm $|x|_p$ of a vector $x=(x_1,x_2,\dots,x_n)\in\mathbb R^n$ is defined as $|x|_p=\bigl(\sum_{k=1}^n|x_k|^p\bigr)^{1/p}$ for $p\in[1,\infty)$ and $|x|_\infty=\max_{k=1,\dots,n}|x_k|$. A ball in the norm $|x|_2$ is a Euclidean ball, while in the norm $|x|_\infty$ it is a Euclidean cube.

1.1. Definitions of Sobolev spaces and the capacity of condensers

For the general theory of Sobolev spaces, the reader is referred to [40], [41]. We recall that a function $u\colon D\to\mathbb R$ is of Sobolev class $L^1_{p}(D)$ if $u\in L_{1,\mathrm{loc}}(D)$, meaning that $u\in L_1(U)$ for every domain $U$ compactly embedded into $D$, written $U\Subset D$, and it has the generalized derivatives $\partial u/dx_j\in L_{1,\mathrm{loc}}(D)$ for every $j=1,\dots,n$ and finite seminorm

$$ \begin{equation*} \|u\mid L^1_{p}(D)\|=\biggl(\int_{D}|\nabla u(y)|^p\,dy\biggr)^{1/p},\qquad 1\leqslant p\leqslant \infty, \end{equation*} \notag $$
where $\nabla u(y)=(\partial u/dx_1,\partial u/dx_2,\dots,\partial u/dx_n)$ is the generalized gradient of $u$. A mapping $\varphi=(\varphi_1,\dots, \varphi_n)\colon D \to \mathbb R^n$ belongs to the Sobolev class $W^1_{p,\mathrm{loc}}(D; \mathbb{R}^n)$ whenever $\varphi_j(x) \in L_{p,\mathrm{loc}}(D)$ and $\partial\varphi_j/dx_i\in L_{p,\mathrm{loc}}(D)$ for all $j,\,i=1,\dots,n$.

We say that a mapping $\varphi\colon D\to \mathbb R^n$ of Sobolev class $W^1_{1,\mathrm{loc}}(D;\mathbb{R}^n)$ is a mapping with finite distortion whenever

$$ \begin{equation} D\varphi(x)=0\text{ almost everywhere (a. e.) on the set }Z=\{x\in D\colon \det D\varphi (x)=0\}. \end{equation} \tag{1.1} $$
(Meaning $\det D\varphi (x)=0$ at all points of $Z$ except for a set of Lebesgue measure zero.)

Here and henceforth $D\varphi (x)=(\partial\varphi_j(x)/\partial x_i)_{i,j=1}^{n}$ stands for the Jacobi matrix of the mapping $\varphi$ at $x\in D$, while $|D\varphi (x)|$, for its Euclidean operator norm, and $\det D\varphi (x)$, for its determinant, the Jacobian.

A locally integrable function $\omega\colon D'\to\mathbb R$ is called a weight whenever $0\,{<}\,\omega(y)\,{<}\,\infty$ for a. e. $y\in D'$. A function $u\colon D'\to\mathbb R$ belongs to the weighted Sobolev class $L^1_{p}(D';\omega)$, with $p\in[1,\infty)$, if $u \in L_{1,\mathrm{loc}}(D')$ and $\partial u/\partial y_j \in L_{p}(D';\omega)$ for every $j=1,\dots,n$. The seminorm of a function $u\in L^1_{p}(D';\omega)$ is then defined as

$$ \begin{equation} \|u\mid L^1_{p}(D';\omega)\|=\biggl(\int_{D'}|\nabla u(y)|^p\omega(y)\,dy\biggr)^{1/p}. \end{equation} \tag{1.2} $$
In the case $\omega\equiv 1$ instead of $L^1_{p}(D';1)$ we write simply $L^1_{p}(D')$.

Henceforth the symbol $\operatorname{Lip}_{\mathrm{loc}}(D')$ stands for the space of locally Lipschitz functions on $D'$. It is obvious that

$$ \begin{equation*} \operatorname{Lip}_{\mathrm{loc}}(D')=W^1_{\infty,\mathrm{loc}}(D')\cap C(D'), \end{equation*} \notag $$
where $W^1_{\infty,\mathrm{loc}}(D')$ is the space of locally bounded measurable functions on $D'$ with locally bounded generalized derivative.

We say that a homeomorphism $\varphi \colon D \to D'$ induces the bounded composition operator

$$ \begin{equation*} \varphi^* \colon {L}^1_p(D';\omega) \cap \operatorname{Lip}_{\mathrm{loc}}(D')\to L^1_q(D), \qquad 1\leqslant q \leqslant p < \infty, \end{equation*} \notag $$
acting as $D\ni x\mapsto(\varphi^*u)(x)=u(\varphi(x))$, whenever for some constant $K_{q,p}<\infty$ the inequality
$$ \begin{equation*} \|\varphi^*u\mid L^1_q(D)\|\leqslant K_{q,p}\|u\mid L^1_p(D';\omega)\| \end{equation*} \notag $$
holds for every function $u\in L^1_p(D')\cap \operatorname{Lip}_{\mathrm{loc}}(D')$.

1.2. Condensers and their capacity in Sobolev spaces

A condenser in a domain $D\subset \mathbb{R}^n$ is a pair $\mathcal E=(F_1,F_0)$ of connected compact sets (continua) $F_1$, $F_0\subset D$. For a continuum $F\subset U$, where $U\Subset D$ is an open connected compactly embedded set, we denote the condenser $\mathcal E=(F,\partial U)$ by $\mathcal E=(F,U)$.

A condenser $\mathcal E=(F, U)$ is called annular whenever the complement in $\mathbb R^n$ to the open set $U\setminus F$ consists of two closed sets each of which is connected: the bounded connected component is the continuum $F$, and the unbounded component is $\mathbb R^n\setminus U$.

A condenser $\mathcal E=(F, U)$ in $\mathbb R^n$ is called spherical whenever $U=B(x,R)=\{y\in\mathbb R^n \colon |y-x|_2< R\}$ and $F=\overline{B(x,r)}=\{y\in\mathbb R^n \colon |y-x|_2 \leqslant r\}$, where $r<R$, and cubical whenever $U=Q(x,R)=\{y\in\mathbb R^n \colon |y-x|_\infty< R\}$ and $F=\overline{Q(x,r)}=\{y\in\mathbb R^n \colon |y-x|_\infty\leqslant r\}$, respectively.

Definition 1.1. A function $u\colon D\to\mathbb R$ of class $W^1_{1,\mathrm{loc}}(D)$ is called admissible for a condenser $\mathcal E=(F_1,F_0)\subset D$ whenever

(1) $u$ is continuous,

(2) $u\equiv 1$ on $F_1$, and

(3) $u \equiv 0$ on $F_0$.

We denote the collection of admissible functions for a condenser $\mathcal E=(F_1,F_0)$ by $\mathcal A(\mathcal E)$.

The capacity of a condenser $\mathcal E=(F_1,F_0)$ in the space $L^1_q(D)$ with $q\in[1,\infty)$ is defined as

$$ \begin{equation} \operatorname{cap}\bigl(\mathcal E; L^1_q(D)\bigr)=\inf_{u}\|u\mid L^1_{q}(D)\|^q, \end{equation} \tag{1.3} $$
where the infimum is taken over all admissible functions $u\in \mathcal A(\mathcal E)\cap L^1_{q}(D)$ for the condenser $\mathcal E=(F_1,F_0)\subset D$.

Let us now define the weighted capacity of a condenser $\mathcal E=(F_1,F_0)\subset D'$ in the space $L^1_p(D';\omega)$ by analogy with (1.3):

$$ \begin{equation*} \operatorname{cap}\bigl(\mathcal E; L^1_p(D';\omega)\bigr)=\inf_{u} \|u\mid L^1_{p}(D';\omega)\|^p, \end{equation*} \notag $$
where the infimum is over all admissible functions $u \in\mathcal A(\mathcal E)\cap \operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega)$ for the condenser $\mathcal E=(F_1,F_0)$.

See the books [41], [44], which present the properties of capacity in Sobolev spaces. For more details on the properties of weighted capacity (for a special class of admissible weights), see [50; Ch. 2].

The definition of capacity yields the following property.

Property 1.2 (Subordination principle). Consider two condensers $\mathcal E'\,{=}\,(F'_1,F'_0)$ and $\mathcal E=(F_1,F_0)$ in a domain $D'$ with the plates of the first condenser included in those of the second one, $F'_1\subset F_1$ and $F'_0\subset F_0$. Then

$$ \begin{equation*} \operatorname{cap}\bigl(\mathcal E'; L^1_p(D';\omega)\bigr)\leqslant \operatorname{cap}\bigl(\mathcal E; L^1_p(D';\omega)\bigr). \end{equation*} \notag $$

1.3. A quasi-additive set function and its properties

Denote by ${\mathcal O}(D)$ a system of open sets in $D$ with the following properties:

(1) $D\in{\mathcal O}(D)$ and if the closure of an open ball $B$ (cube $Q$) lies in $D$, then $B\in{\mathcal O}(D)$ ($Q\in{\mathcal O}(D)$);

(2) if $U_1,\dots,U_k\in{\mathcal O}(D)$ is a disjoint system of open sets, then $\bigcup_{i=1}^kU_i\in{\mathcal O}(D)$, where $k\in \mathbb N$ is an arbitrary number.

The choice of a ball or cube in this definition depends on the choice of a system of elementary sets with respect to which the set function is differentiated, see (1.6).

Definition 1.3. A mapping $\Phi\colon {\mathcal O}(D)\to[0,\infty]$ is called a quasi-additive set function if

(1) for every point $x\in D$ there exists a number $\delta(x)\in(0,\infty)$ such that $\overline{B(x,\delta(x))}\subset D$ and $0<\Phi(B(x,\delta))<\infty$ for all $\delta\in(0, \delta(x))$, and the ball in this condition can be replaced with a cube;

(2) every finite tuple $\{U_i\in{\mathcal O}(D)\}$, for $i=1,\dots,l$, of disjoint open sets with

$$ \begin{equation} \bigcup_{i=1}^lU_i \subset U,\quad \text{where }U\in{\mathcal O}(D), \text{ satisfies } \sum_{i=1}^{l}\Phi(U_i)\leqslant \Phi(U). \end{equation} \tag{1.4} $$

If every finite tuple $\{U_i\in{\mathcal O}(D)\}$ of pairwise disjoint open sets satisfies

$$ \begin{equation} \sum_{i=1}^{n}\Phi(U_i)=\Phi\biggl(\bigcup_{i=1}^{n} U_i \biggr), \end{equation} \tag{1.5} $$
then this set function is called finitely additive, while if (1.5) holds for every countable tuple $\{U_i\in{\mathcal O}(D)\}$ of disjoint open sets, then this set function is called countably additive. The function $\Phi$ is monotone whenever $\Phi(U_1)\leqslant \Phi(U_2)$ as soon as $U_1\subset U_2 \subset D$ with $U_1,U_2\in{\mathcal O}(D)$. Every quasi-additive set function is obviously monotone. A quasi-additive set function $\Phi\colon {\mathcal O}(D)\to[0,\infty]$ is called a bounded quasi-additive set function whenever $D\in {\mathcal O}(D)$ and $\Phi(D)<\infty$.

It is known, see [51]–[53] for instance, that every quasi-additive set function $\Phi$ defined on some system ${\mathcal O}(D')$ of open subsets of a domain $D'$ is differentiable in the following sense: for a. e. point $y\in D'$ there exists the finite derivative1:

$$ \begin{equation} \lim_{\delta\to 0,\, y\in B_\delta}\frac{\Phi(B_\delta)}{\mathcal{H}^n(B_{\delta})}=\Phi'(y); \end{equation} \tag{1.6} $$
and for every open set $U\in \mathcal O(D')$ we have
$$ \begin{equation} \int_{U}\Phi'(y)\,dy \leqslant \Phi(U). \end{equation} \tag{1.7} $$

1.4. Definition of the class of $\mathcal Q_{p,q}(D',\omega;D)$-homeomorphisms and their properties

Denote by $\mathcal O_{\mathrm c}(D')$ the minimal system of open sets in $D'$, which contains:

(1) $D'$;

(2) every open cube $Q$ whenever $\overline Q\subset D'$;

(3) the complement $Q_2\setminus \overline Q_1$ whenever $Q_1\subset Q_2$ are two cubes with a common center and $\overline Q_2\subset D'$.

In the following Definition 1.4 and Theorem 1.6, we consider the mapping $\Phi\colon \mathcal O_{\mathrm c}(D')\to[0,\infty)$ as the bounded quasi-additive set function.

Definition 1.4 [31]. Given two domains $D$, $D'\subset\mathbb R^n$, for $n\geqslant2$, we say that a homeomorphism $f\colon D'\to D$ is of class2 $\mathcal{CRQ}_{p, q}(D',\omega;D)$, where $1< q\leqslant p<\infty$ for $n\geqslant3$ and $1\leqslant q\leqslant p<\infty$ for $n=2$, while $\omega\in L_{1,\mathrm{loc}}(D')$ is a weight function, if there exist

(1) a constant $K_p>0$ for $q=p$ or

(2) a bounded quasi-additive function $\Psi_{p,q}$ defined on the system $\mathcal O_{\mathrm c}(D')$ of open sets in $D'$ for $q<p$

such that for every cubical condenser $\mathcal E=(\overline{Q(x,r)}, Q(x,R))\subset D'$ with $0<r<R$ with the image $f(\mathcal E)=(f(\overline{Q(x,r)}), f(Q(x,R))\subset D$ we have

$$ \begin{equation} \begin{cases} \operatorname{cap}^{1/p}\bigl(f(\mathcal E); L^1_p(D)\bigr) \leqslant K_p\operatorname{cap}^{1/p}\bigl(\mathcal E; L^1_p(D';\omega)\bigr) &\text{if } q=p, \\ \operatorname{cap}^{1/q}\bigl(f(\mathcal E); L^1_q(D)\bigr) \leqslant \Psi_{p,q}(Q(x,R)\setminus \overline{Q(x,r)})^{1/\sigma} \operatorname{cap}^{1/p}\bigl(\mathcal E; L^1_p(D';\omega)\bigr) &\text{if } q<p, \end{cases} \end{equation} \tag{1.8} $$
where $1/\sigma=1/q-1/p$.

Definition 1.5 [31], [32]. Let $D$ and $D'$ be open sets in $\mathbb R^n$ with $n\geqslant2$, $1< q\leqslant p<\infty$ for $n\geqslant3$ and $1\leqslant q\leqslant p<\infty$ for $n=2$, and $\omega\in L_{1,\mathrm{loc}}(D')$ be a weight function. We say that a homeomorphism $\varphi \colon D\to D'$ belongs to the class $\mathcal{Q}_{p, q}(D',\omega;D)$, whenever each condenser $\mathcal E=(F_1,F_0)$ in $D'$ with the preimage $\varphi^{-1}(\mathcal E)=(\varphi^{-1}(F_1),\varphi^{-1}(F_0))$ in $D$ satisfies

$$ \begin{equation} \begin{aligned} \, &\operatorname{cap}^{1/q}\bigl(\varphi^{-1}(\mathcal E); L^1_q(D)\bigr) \nonumber \\ &\qquad\leqslant \begin{cases} \widetilde K_p \operatorname{cap}^{1/p}\bigl(\mathcal E; L^1_p(D';\omega)\bigr), &1<q=p<\infty, \\ \widetilde\Psi(D'\setminus(F_0\cup F_1))^{1/\sigma} \operatorname{cap}^{1/p}\bigl(\mathcal E; L^1_p(D';\omega)\bigr), &1<q<p<\infty, \end{cases} \end{aligned} \end{equation} \tag{1.9} $$
where $1/\sigma=1/q-1/p$, while $\widetilde\Psi$ is some bounded quasi-additive set function defined on open subsets of $D'$.

It is easy to see that if $\varphi\in\mathcal{Q}_{p, q}(D',\omega;D)$, then $f=\varphi^{-1}\in\mathcal{CRQ}_{p, q}(D',\omega;D)$.

The following Theorem 1.6 gives an analytic description of the mappings with inverses of class $\mathcal{CRQ}_{p, q}(D',\omega;D)$.

Theorem 1.6 [33; Theorem 1]. A homeomorphism $f\colon D' \to D$ belongs to the class $\mathcal{CRQ}_{p, q}(D',\omega;D)$ with $1<q\leqslant p<\infty$ for $n\geqslant 3$ and $1\leqslant q\leqslant p<\infty$ for $n=2$ if and only if the inverse homeomorphism $\varphi=f^{-1}\colon D\to D'$ enjoys one of the following properties:

(1) the composition operator $\varphi^*\colon {L}^1_p(D';\omega) \cap \operatorname{Lip}_{\mathrm{loc}}(D')\to L^1_q(D)$, with $1< q \leqslant p<\infty$, is bounded;

(2) the homeomorphism $\varphi\colon D\to D'$ is of class $\mathcal{Q}_{p, q}(D',\omega;D)$ in the sense of Definition 1.5, with some bounded quasi-additive set function $\widetilde\Psi$ defined on open subsets of $D'$;

(3) a homeomorphism $\varphi \colon D \to D'$

(4) if $n=2$, then claims (1)–(3) also hold in the case $1=q \leqslant p<\infty$.

Note that Theorem 1.6 is a consequence of [29; Theorem 1], [30], and [31], [32; Theorem 1], see details in [33; Theorem 1]. The smallest quantities $K_p$ and $\widetilde K_p$ (quasiadditive functions $\Psi$ and $\widetilde\Psi$) in (1.8), (1.9) satisfy

$$ \begin{equation} \text{for }q=p \quad \|\varphi^*\| =\|K^{1,\omega}_{p,p}(\,{\cdot}\,)\mid L_\infty(D)\|= K_p=\widetilde K_p \end{equation} \tag{1.11} $$
$$ \begin{equation} \bigl(\text{for }q<p\quad \|\varphi^*_W\|^\sigma =\|K^{1,\omega}_{q,p}(\,{\cdot}\,)\mid L_\sigma(\varphi^{-1}(W))\|^\sigma= \Psi(W)=\widetilde\Psi(W)\bigr) \end{equation} \tag{1.12} $$
for an open set $W\subset D'$, where $\|\varphi^*_W\|$ is the norm of the restriction
$$ \begin{equation*} \varphi_W\colon {L}^1_p(W;\omega) \cap \mathring{\mathrm{Lip}}_{\mathrm{loc}}(W)\to L^1_q(D); \end{equation*} \notag $$
here $\mathring{\mathrm{Lip}}_{\mathrm{loc}}(W)$ stands for the space of locally Lipschitz functions vanishing on the boundary of $W$, see [34; Theorem 4].

Let us formulate the following corollary of Theorem 1.6.

Corollary 1.7. A homeomorphism $f\colon D\to D'$ is of class $\mathcal{CRQ}_{p, q}(D',\omega;D)$ with $1<q\leqslant p<\infty$ for $n\geqslant 3$ and $1\leqslant q\leqslant p<\infty$ for $n=2$ if and only if $\varphi=f^{-1}$ is also of class $\mathcal{Q}_{p, q}(D',\omega;D)$.

Therefore, from now on we use only $\mathcal{Q}_{p, q}(D',\omega;D)$ to refer to both classes $\mathcal{CRQ}_{p, q}(D',\omega;D)$ and $\mathcal{Q}_{p, q}(D',\omega;D)$.

The differential properties of mappings of the classes $\mathcal{Q}_{p, q}(D',\omega;D)$ are established in [30] and [31; Theorem 2].

Remark 1.8. The homeomorphisms $\varphi\colon D \to D'$ with $f=\varphi^{-1}\in \mathcal{Q}_{p, q}(D',\omega;D)$ in the cases

(1) $q=p=n$ and $\omega\equiv1$ coincide with quasiconformal mappings [18], [42]–[45];

(2) $1<q=p<\infty$ and $\omega\equiv1$ were studied in [28];

(3) $1<q<p<\infty$ and $\omega\equiv1$ were studied in [28], [37]–[39].

Let us extract from Theorem 1.6 and Corollary 1.7 the following two examples of $Q_{p,q}$-homeomorphisms.

Example 1.9 [29], [32]. If a homeomorphism $\varphi\colon D \to D'$ induces a bounded composition operator $\varphi^*\colon {L}^1_p(D';\omega) \cap \operatorname{Lip}_{\mathrm{loc}}(D')\to L^1_q(D)$, with $1<q\leqslant p<\infty$ for $n\geqslant 3$ and $1\leqslant q\leqslant p<\infty$ for $n=2$, then the inverse homeomorphism $f=\varphi^{-1}\colon D'\to D$ is of class $\mathcal{Q}_{p, q}(D',\omega;D)$.

Example 1.10 [29], [32]. Consider a homeomorphism $\varphi \colon D \to D'$ of Sobolev class $W^1_{q, \mathrm{loc}}(D)$ with finite distortion (1.1) and the operator function distortion (1.10) of class $L_{\sigma}(D)$, where $1/\sigma=1/q-1/p$ for $1\leqslant q<p<\infty$ and $\sigma=\infty$ for $q=p$.

If $1<q\leqslant p<\infty$ for $n\geqslant 3$ and $1\leqslant q\leqslant p<\infty$ for $n=2$, then the inverse homeomorphism $f=\varphi^{-1}\colon D'\to D$ is of class $\mathcal{Q}_{p, q}(D',\omega;D)$.

In addition to Examples 1.9 and 1.10, other classes of mappings in the family $\mathcal Q_{p,q}(D',\omega;D)$ were considered in [31]. Let us present some of them.

Example 1.11 [31; Example 3]. Consider a homeomorphism $\varphi\colon D\to D'$ of Sobolev class $W^1_{p,\mathrm{loc}}(D)$, where $1<p<\infty$ for $n\geqslant3$ and $1\leqslant p<\infty$ for $n=2$, with finite distortion. The inverse homeomorphism $f=\varphi^{-1}\colon D'\to D$ is of class $\mathcal Q_{p,p}(D',\omega;D)$ with the constant $K_p=1$ and the weight function

$$ \begin{equation} D'\ni y\mapsto \omega(y)= \begin{cases} \dfrac{|D\varphi(\varphi^{-1}(y))|^p}{|{\det D\varphi (\varphi^{-1}(y))}|} &\text{if } y\in D'\setminus (Z'\cup\Sigma'), \\ 1 &\text{otherwise.} \end{cases} \end{equation} \tag{1.13} $$

Remark 1.12. As [31; Theorem 5] shows, the weight function (1.13) is locally integrable.

Example 1.13 [31; Example 4]. For $n-1< s<\infty$ consider a homeomorphism $f \colon D' \to D$ of open domains $D',D\subset \mathbb{R}^n$, where $n\geqslant 2$, such that

(1) $f\in W^1_{n-1, \mathrm{loc}}(D')$;

(2) the mapping $f$ has finite distortion;

(3) the outer distortion function

$$ \begin{equation} D'\ni y \mapsto K^{1,1}_{n-1,s}(y,f) = \begin{cases} \dfrac{|Df(y)|}{|{\det Df (y)}|^{1/s}} &\text{if } \det Df (y)\neq 0, \\ 0 &\text{if }\det Df (y) = 0 \end{cases} \end{equation} \tag{1.14} $$
lies in $L_{\sigma}(D)$, where $\sigma=(n-1)p$ with $p=s/(s-(n-1))$.

Then the inverse homeomorphism $\varphi=f^{-1}\colon D\to D'$ has the properties

(4) $\varphi\in W^1_{p, \mathrm{loc}}(D)$, $p=s/(s-(n-1))$;

(5) $\varphi$ has finite distortion;

while the homeomorphism $f\colon D'\to D$

(6) is of class $\mathcal Q_{p,p}(D',\omega;D)$ with the constant $K_p=1$ and the weight function $\omega\in L_{1,\mathrm{loc}}(D')$ defined as

$$ \begin{equation} \omega(y)= \begin{cases} \dfrac{|{\operatorname{adj} Df(y)}|^{p}}{|{\det Df (y)}|^{p-1}} &\text{if }y\in D'\setminus Z', \\ 1 &\text{otherwise}, \end{cases} \end{equation} \tag{1.15} $$
where $Z'=\{y\in D'\colon Df(y)=0\}$.

Say that a mapping $f\in W^1_{1, \mathrm{loc}}(D')$ has finite codistortion if the adjoint matrix $\operatorname{adj} Df(y)$ of the differential equals $0$ a. e. on the zero set of the Jacobian

$$ \begin{equation*} Z=\{y\in D' \mid \det Df(y)=0\}. \end{equation*} \notag $$

Example 1.14 [31; Example 5]. For $n-1< s<\infty$, consider a homeomorphism $f \colon D' \to D$ of domains $D',D\subset \mathbb{R}^n$, with $n\geqslant 2$, such that

(1) $f\in W^1_{n-1, \mathrm{loc}}(D')$;

(2) the mapping $f$ has finite codistortion;

(3) the inner distortion function

$$ \begin{equation} D'\ni y \mapsto \mathcal K^{1,1}_{n-1,s}(y,f) = \begin{cases} \dfrac{|{\operatorname{adj} Df(y)}|}{|{\det Df (y)}|^{(n-1)/s}} &\text{if }\det Df (y)\neq 0, \\ 0 &\text{if }\det Df (y) = 0 \end{cases} \end{equation} \tag{1.16} $$
belongs to $L_{p}(D')$, where $p=s/(s-(n-1))$ and $n-1<s<\infty$.

Then the inverse homeomorphism $\varphi=f^{-1}\colon D\to D'$ has the properties

(4) $\varphi\in W^1_{p, \mathrm{loc}}(D)$ and $p=s/(s-(n-1))$;

(5) $\varphi$ has finite distortion;

and the homeomorphism $f\colon D'\to D$

(6) is of class $\mathcal Q_{p,p}(D',\omega;D)$ with the constant $K_p=1$ and the weight function (1.15);

(7) has finite distortion for $n-1< s<n+1/(n-2)$.

Example 1.15 [35; Definition 11, Theorem 34]. A homeomorphism $f\colon D'\to D$ is called a homeomorphism with inner bounded $\theta$-weighted $(s,r)$-distortion, or of class $\mathcal{ID}(D';s,r;\theta,1)$, where $n-1< s\leqslant r<\infty$, whenever:

(1) $f\in W^1_{n-1,\mathrm{loc}}(D')$;

(2) the mapping $f$ has finite codistortion;

(3) the function of local $\theta$-weight $(s,r)$-distortion

$$ \begin{equation} D' \ni x\mapsto \mathcal K_{s,r}^{\theta,1}(x,f) =\begin{cases} \dfrac{\theta^{(n-1)/s}(x)|{\operatorname{adj}} D f(x)|}{|{\det D f(x)}|^{(n-1)/r}} &\text{if } \det D f(x)\ne0, \\ 0 &\text{otherwise} \end{cases} \end{equation} \tag{1.17} $$
belongs to $L_{\varrho}(\Omega)$, where $\varrho$ can be found from the condition $1/\varrho = (n-1)/s-(n- 1)/r$, and $\varrho= \infty$ for $s=r$.

Then under the condition $n-1< s\leqslant r<\infty$ and the local summability of the function $\omega(x)=\theta^{-(n-1)/(s-(n-1))}(x)$, the homeomorphism $f\colon D'\to D$ belongs to $\mathcal Q_{p,q}(D',\omega;D)$, where $q=r/(r-(n-1))$ and $p=s/(s-(n-1))$, for $1<q\leqslant p<\infty$. Furthermore, the factors on the right-hand side of (1.8) are equal to $K_p=\|\mathcal K_{r,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\infty}(\Omega)\|$ for $q=p$ and

$$ \begin{equation*} \Psi_{p,q}(Q(x,R)\setminus \overline{Q(x,r)})^{1/\sigma}= \bigl\|\mathcal K_{s,r}^{\theta,1}(\,{\cdot}\,,f)\bigm| L_{\varrho}(Q(x,R)\setminus \overline{Q(x,r)})\bigr\| \quad \text{for} \quad q<p, \end{equation*} \notag $$
where $1/\sigma=1/q-1/p=1/\varrho$.

Example 1.16 [36; Definition 3, Theorem 19]. A homeomorphism $f\colon D'\to D$ is of class $\mathcal{OD}(D';s,r;\theta,1)$, with $n-1< s\leqslant r<\infty$, and is called a mapping with outer bounded $\theta$-weighted $(s,r)$-distortion, whenever:

(1) $f\in W^1_{n-1,\mathrm{loc}}(D')$;

(2) the mapping $f$ has finite distortion;

(3) the function of local $\theta$-weighted $(s,r)$-distortion

$$ \begin{equation*} D' \ni x\mapsto K_{s,r}^{\theta,1}(x,f)= \begin{cases} \dfrac{\theta^{1/s}(x)|D f(x)|}{|{\det D f(x)}|^{1/r}} &\text{if }\det D f(x)\ne0, \\ 0 &\text{otherwise} \end{cases} \end{equation*} \notag $$
belongs to $L_{\rho}(D')$, where $\rho$ can be found from the conditions $1/\rho = 1/s-1/r$ and $\rho = \infty$ for $s=r$.

Then under the condition $n-1< s\leqslant r<\infty$ and the local summability of $\omega(x)=\theta^{-(n-1)/(s-(n-1))}(x)$, the homeomorphism $f\colon D'\to D$ belongs to $\mathcal Q_{p,q}(D',\omega;D)$, where $q=r/(r-(n-1))$ and $p=s/(s-(n-1))$ with $1<q\leqslant p<\infty$. The factors on the right-hand side of (1.8) are equal to $K_p=\|K_{r,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\infty}(D')\|^{n-1}$ for $q=p$ and

$$ \begin{equation*} \Psi_{p,q}(Q(x,R)\setminus \overline{Q(x,r)})^{1/\sigma}= \bigl\|K_{s,r}^{\theta,1}(\,{\cdot}\,,f)\bigm| L_{\rho}(Q(x,R)\setminus \overline{Q(x,r)})\bigr\|^{n-1} \end{equation*} \notag $$
for $q<p$, where $1/\sigma=1/q-1/p=(n-1)/\varrho$.

It is shown in [36; Theorem 8] that the inclusion

$$ \begin{equation*} \mathcal{OD}(D';s,r;\theta,1) \subset \mathcal{ID}(D';s,r;\theta,1) \end{equation*} \notag $$
holds under the condition $n-1< s\leqslant r<\infty$. Moreover, for every homeomorphism $f\colon D'\to D$ of class $\mathcal{OD}(D';s,r;\theta,1)$, with $n-1< s\leqslant r<\infty$, we have
$$ \begin{equation*} \|\mathcal K_{s,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\sigma}(D')\|\leqslant \| K_{s,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_\rho(D')\|^{n-1}, \end{equation*} \notag $$
where the numbers $\rho$ and $\sigma$ are defined in Examples 1.15 and 1.16.

More examples of $\mathcal{OD}(D'; s, r; \theta, 1)$-homeomorphisms in $\mathbb R^2$ can be found in [54].

§ 2. Behavior of mappings with respect to the capacity metric

Fix two domains $D, D'\subset \mathbb R^n$, a locally integrable weight function $\omega\colon D'\to\mathbb R$ on $D'$, and a mapping $f\in\mathcal Q_{p,q}(D',\omega;D)$ with $n-1<q\leqslant p<\infty$.

Recall that Corollary 1.7 guarantees that $f$ satisfies (1.9) for every condenser $\mathcal E=(F_1,F_0)$ in $D'$.

Fix some continuum $F_0\subset D'$ with nonempty interior such that the open set $D'\setminus F_0$ is connected.

2.1. Capacity metric functions in domains for the homeomorphisms of class $\mathcal Q_{p,q}(D',\omega;D)$ for $n-1<q\leqslant p\leqslant n$

Observe that in the case $n-1<q\leqslant n$ the left-hand side of (1.9) is nonzero as long as the continuum $f(F_1)$ is distinct from a point. Indeed, we have the following proposition.

Lemma 2.1. In a domain $D\subset \mathbb R^n$ fix two balls $B_0\Subset D$ and $B_1\Subset D$ satisfying $\overline{B_0}\cap\overline{B_1}=\varnothing$. Then for $n-1<q\leqslant n$, a fixed continuum $T_0\subset B_0$, and an arbitrary continuum $T_1\subset \overline{B_1}$, the relation

$$ \begin{equation} \operatorname{cap}^{1/q}\bigl((T_1,T_0); L^1_q(D)\bigr)\to 0 \end{equation} \tag{2.1} $$
holds3 if and only if $\operatorname{diam} T_1\to 0$.

Proof. Let us present the scheme of the proof of Lemma 2.1.

Necessity. By [48; Lemma 3], there is a John domain [48; Definition 8] $\Omega\in J(\alpha,\beta)$ compactly embedded into $D$, with some positive parameters $\alpha$ and $\beta$ depending on $D$ and the balls $B_0$ and $B_1$, which includes the closures of both balls. On the domain $\Omega$ under the conditions $1\leqslant q < n$ and $q\leqslant q^*\leqslant nq/(n-q)$ we have the following Poincaré inequality [55; Theorems 4 and 9]:

$$ \begin{equation} \|u - c_u\mid L_{q^*}(\Omega)\| \leqslant C_\Omega\biggl(\frac{\alpha}{\beta}\biggr)^{n}(\operatorname{diam}\Omega)^{1-n/q+n/q^*} \|\nabla u \mid L_q(\Omega)\|, \end{equation} \tag{2.2} $$
where $c_u$ and $C_\Omega$ are constants, with $C_\Omega>0$ independent of $u$, $\alpha$, and $\beta$. By (2.1) there exists a sequence of continua $T_{1,k}\subset B_1$ and admissible functions $u_k\in C(\Omega)\cap L^1_q(\Omega)$ for the capacity $\operatorname{cap}((T_{1,k}, T_0); L^1_q(\Omega))$ such that
$$ \begin{equation} u_k\vert_{T_{1,k}}= 1,\quad u_k\vert_{T_0}= 0,\quad 0\leqslant u_k\leqslant 1\quad \text{and} \quad \|\nabla u_k \mid L_q(\Omega)\|\to 0\quad \text{as}\quad k\to\infty. \end{equation} \tag{2.3} $$
And hence, the inequality (2.2) implies that $\|u_k - c_{u_k}\mid L_{q^*}(\Omega)\|\to 0$ as $k\to\infty$. Note that the sequence of numbers $\{c_{u_k}\}$ is bounded. Indeed, if $\{c_{u_k}\}$ is not bounded then, due to the relations $0\leqslant u_k\leqslant 1$, the left-hand side of (2.2) is also not bounded, which contradicts the right convergence in (2.3). Therefore, we may assume that $c_{u_k}$ converges to some number $c_0$, and up to subsequence $u_{k} - c_{u_{k}}\to 0$ for a. e. $x\in \Omega$ as $k\to\infty$. Hence, $u_{k} \to c_0$ for a. e. $x\in \Omega$ as $k\to\infty$, and due to $u_{k}|_{B_0}\equiv0$ we deduce $c_0=0$. In addition, $\Omega$ is a bounded domain, and the Lebesgue dominated convergence theorem shows that
$$ \begin{equation} \|u_l \mid L_{q}(\Omega)\|\to 0\quad\text{as}\quad l\to\infty. \end{equation} \tag{2.4} $$
From (2.3) and (2.4) we infer that $\|u_l \mid W^1_{q}(\Omega)\|\to 0$ as $l\to\infty$. We can extend the restrictions $u_l|_{B_1}$ to the functions $\widetilde u_l\in W^1_{q}(\mathbb R^n)$ so that the extension operator is bounded. Therefore,
$$ \begin{equation*} \|\widetilde u_l \mid W^1_{q}(\mathbb R^n)\|\to 0\quad \text{as}\quad l\to\infty. \end{equation*} \notag $$
We obtain then that the capacity of the continua $T_{1,l}$ in the space $W^1_{q}(\mathbb R^n)$ of Bessel potentials is positive and tends to $0$ as $l\to\infty$. For $n-1< q < n$ the latter is possible only if $\operatorname{diam} T_{1,l}\to 0$ as $l\to\infty$; see the details in [56], [41].

The case $q =n$ reduces to the previous one using Hölder’s inequality.

Sufficiency. Since Property 1.2 yields

$$ \begin{equation*} \operatorname{cap}\bigl((T_1,T_0); L^1_q(D)\bigr) \leqslant \operatorname{cap}\bigl((T_1,\overline{B_0}); L^1_q(D)\bigr), \end{equation*} \notag $$
it suffices to prove that $\operatorname{cap}((T_1,\overline{B_0}); L^1_q(D))\to0$ as $\operatorname{diam} T_1\to 0$.

Put $R=\operatorname{dist}(B_0,B_1)$ and suppose that the continuum $T_1$ satisfies $r_{T_1}<R$. Then we may assume that every admissible function for the condenser $(\overline{B(x,r_{T_1})}, B(x,R))$ is also admissible for the condenser $(T_1,T_0)$, and so

$$ \begin{equation*} \operatorname{cap}\bigl((T_1,T_0); L^1_q(D)\bigr)\leqslant \operatorname{cap}\bigl(\bigl(\overline{B(x,r_{T_1})},B(x,R)\bigr); L^1_q(B(x,R))\bigr). \end{equation*} \notag $$

From Example 2.7 below for $\alpha=0$, we conclude

$$ \begin{equation*} \begin{aligned} \, &\operatorname{cap}\bigl(\bigl(\overline{B(0,r)},B(0,R)\bigr);L^1_q(B(0,R))\bigr) \\ &\qquad= \begin{cases} \sigma_{n-1}\biggl(\dfrac{n-q}{n-1}\biggr)^{q-1} (r^{(q-n)/(q-1)}-R^{(q-n)/(q-1)})^{1-q} &\text{for }q<n, \\ \sigma_{n-1}\biggl(\ln\dfrac{R}r\biggr)^{1-n} &\text{for }q=n, \end{cases} \end{aligned} \end{equation*} \notag $$
where $r\in(0,R)$, while $\sigma_{n-1}$ is the measure of the unit $(n-1)$-dimensional sphere in the space $\mathbb R^n$. Thus,
$$ \begin{equation*} \operatorname{cap}\bigl(\bigl(\overline{B(x,r_{T_1})},B(x,R)\bigr); L^1_q(B(x,R)\bigr) \to0 \quad \text{as}\quad r_{T_1}\to 0, \end{equation*} \notag $$
and the proof of Lemma 2.1 is complete.

Corollary 2.2. For $n-1\,{<}\,q\,{\leqslant}\, n$, the existence of a mapping $f\,{\in}\,\mathcal Q_{p,q}(D',\omega;D)$ is ensured by the condition

$$ \begin{equation} \operatorname{cap}^{1/p}\bigl(\mathcal E; L^1_p(D';\omega)\bigr)\ne0 \end{equation} \tag{2.5} $$
for an arbitrary condenser $\mathcal E=(\gamma,F_0)$, where $\gamma\colon[a,b]\to D'\setminus F_0$ is an arbitrary closed curve with distinct endpoints $x=\gamma(a)$ and $y=\gamma(b)$.

Proof. Since the continuum $F_0\subset D'$ has nonempty interior, there exists a closed ball $\overline{B_0'}\subset F_0$ and a closed ball $\overline{B_1'}\subset D'$ centered on $\gamma$ such that $\overline{B_1'}\cap \overline{B_0'}=\varnothing$. Consider the condenser $\mathcal E=(\gamma\cap\overline{B_1'}, \overline{B_0'})$. By (1.8), it suffices to show that
$$ \begin{equation} \operatorname{cap}\bigl(f(\mathcal E); L^1_q(D)\bigr)\ne0. \end{equation} \tag{2.6} $$
The latter follows from Lemma 2.1. Indeed, there are closed disjoint balls $\overline{B_0''}\subset f(\overline{B_0'})$ and $\overline{B_1''}\subset f(\overline{B_1'})$ whose intersection $\gamma\cap\overline{B_1''}$ is a nondegenerate continuum. Then, Lemma 2.1 and (1.8) yield
$$ \begin{equation*} 0 \ne \operatorname{cap}\bigl(\bigl(\gamma\cap\overline{B_1'}, \overline{B_0'}\bigr);L^1_q(D)\bigr)\leqslant \operatorname{cap}\bigl(f(\mathcal E); L^1_q(D)\bigr). \end{equation*} \notag $$
This justifies Corollary 2.2.

With (2.5) we can define a metric function similar to the one introduced in [25], [26; Ch. 5] in the unweighted case.

Definition 2.3. The capacity $(\omega,p)$-metric function between two distinct points $x,y \in D' \setminus F_0$ with respect to $F_0$ is defined as

$$ \begin{equation} \rho^{\omega}_{p,F_0}(x,y) = \inf_{\overline{xy}} \operatorname{cap}^{1/p}\bigl((\overline{xy}, F_0); L^1_p(D';\omega)\bigr), \end{equation} \tag{2.7} $$
where the infimum is over all curves $\overline{xy}$ in $D'\setminus F_0$ with endpoints $x,y\in D'\setminus F_0$.

By analogy, we define the capacity $q$-metric function $\rho_{q,f(F_0)}(a,b)$ between two points $a,b \in D \setminus f(F_0)$ with respect to the continuum $f(F_0)$ in the image $D'$:

$$ \begin{equation} \rho_{q,f(F_0)}(a,b) = \inf_{\overline{ab}} \operatorname{cap}^{1/q}\bigl((\overline{ab}, f(F_0)); L^1_q(D)\bigr). \end{equation} \tag{2.8} $$

Proposition 2.4. If a homeomorphism $f\colon D' \to D$ belongs to $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant2$ for $n=2$, then the capacity metric functions satisfy

$$ \begin{equation} \begin{cases} \rho_{p,f(F_0)}\bigl(f(x),f(y)\bigr) \leqslant K_p\rho^{\omega}_{p,F_0}(x,y) &\textit{if } q=p, \\ \rho_{q,f(F_0)}\bigl(f(x),f(y)\bigr) \leqslant \Psi_{p,q}(D'\setminus F_0)^{1/\sigma} \rho^{\omega}_{p,F_0}(x,y) &\textit{if } q<p, \end{cases} \end{equation} \tag{2.9} $$
for all points $x,y\in D'\setminus F_0$, where $1/\sigma=1/q-1/p$.

Proof. Take $\mathcal E=(\overline{xy},F_0)$ in $D'$, then from (1.9) it follows that
$$ \begin{equation*} \begin{aligned} \, \rho_{q,f(F_0)}(f(x),f(y))& \leqslant\operatorname{cap}^{1/q}\bigl((f(\overline{xy}),f(F_0)); L^1_q(D)\bigr) \\ &\leqslant \Psi_{p,q}(D'\setminus F_0)^{1/\sigma} \operatorname{cap}^{1/p}\bigl((\overline{xy},F_0); L^1_p(D';\omega)\bigr) \end{aligned} \end{equation*} \notag $$
provided that $q<p$. Passing to the infimum over all curves $\overline{xy}\subset D'\setminus F_0$ with endpoints $x$ and $y$, we arrive at the second inequality in (2.9).

The case $q=p$ is similar.

Proposition is proved.

Proposition 2.5. In the case $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant2$ for $n=2$, the capacity $(\omega,p)$-metric function $\rho^{\omega}_{p,F_0}(x,y)$ enjoys the properties

(1) $\rho^{\omega}_{p,F_0}(x,y)=\rho^{\omega}_{p,F_0}(y,x)$ for all points $x,y\in D' \setminus F_0$;

(2) $\rho^{\omega}_{p,F_0}(x,z)\leqslant \rho^{\omega}_{p,F_0}(x,y)+\rho^{\omega}_{p,F_0}(y,z)$ for all points $x,y,z\in D' \setminus F_0$.

Proof. Property (1) is obvious.

To verify the second property, consider the case $x\ne z$, $x\ne y$, $y\ne z$; otherwise property (2) obviously holds. Fix $\varepsilon>0$ and some curves $\overline{xy}$ and $\overline{yz}$ with endpoints $x$, $y$ and $y$, $z$, respectively, such that

$$ \begin{equation} \operatorname{cap}^{1/p}\bigl((\overline{xy}, F_0); L^1_p(D';\omega)\bigr) < \rho^{\omega}_{p,F_0}(x,y)+\frac{\varepsilon}{4}, \end{equation} \tag{2.10} $$
$$ \begin{equation} \operatorname{cap}^{1/p}\bigl((\overline{yz}, F_0); L^1_p(D';\omega)\bigr) < \rho^{\omega}_{p,F_0}(y,z)+\frac{\varepsilon}{4}. \end{equation} \tag{2.11} $$
Take two functions $u_1$ and $u_2$ admissible for the capacities $\operatorname{cap}((\overline{xy}, F_0); L^1_p(D';\omega))$ and $\operatorname{cap}((\overline{yz}, F_0); L^1_p(D';\omega))$ such that
$$ \begin{equation} \biggl(\int_{D'}|\nabla u_1|^p(y)\omega(y)\,dy\biggr)^{1/p} < \operatorname{cap}^{1/p}\bigl((\overline{xy}, F_0); L^1_p(D';\omega)\bigr)+\frac{\varepsilon}{4}, \end{equation} \tag{2.12} $$
$$ \begin{equation} \biggl(\int_{D'}|\nabla u_2|^p(y)\omega(y)\,dy\biggr)^{1/p} < \operatorname{cap}^{1/p}\bigl((\overline{yz}, F_0); L^1_p(D';\omega)\bigr)+\frac{\varepsilon}{4}. \end{equation} \tag{2.13} $$
It is easy to see that $u_1+u_2$ is admissible for the capacity $\operatorname{cap}^{1/p}((\overline{xy}\cup\overline{yz}, F_0); L^1_p(D';\omega))$. Hence, from (2.10)(2.13), we obtain
$$ \begin{equation*} \begin{aligned} \, \rho^{\omega}_{p,F_0}(x,z) &\leqslant \operatorname{cap}^{1/p}\bigl((\overline{xy}\cup\overline{yz}, F_0); L^1_p(D';\omega)\bigr) \leqslant \biggl(\int_{D'}|\nabla (u_1+u_2)|^p(y)\omega(y)\,dy\biggr)^{1/p} \\ &\leqslant \biggl(\int_{D'}|\nabla u_1|^p(y)\omega(y)\,dy\biggr)^{1/p}+ \biggl(\int_{D'}|\nabla u_2|^p(y)\omega(y)\,dy\biggr)^{1/p} \\ &<\rho^{\omega}_{p,F_0}(x,y)+\rho^{\omega}_{p,F_0}(y,z)+\varepsilon. \end{aligned} \end{equation*} \notag $$
Since $\varepsilon>0$ is chosen arbitrarily, the triangle inequality is verified. Proposition is proved.

Recall that the metric function $\rho^{\omega}_{p,F_0}$ is defined in (2.7) for distinct points $x\ne y$ of the open set $D' \setminus F_0$. If $x=y\in D' \setminus F_0$, put

$$ \begin{equation} \rho^{\omega}_{p,F_0}(x,x)=\operatorname{cap}^{1/p}\bigl((\{x\}, F_0); L^1_p(D';\omega)\bigr). \end{equation} \tag{2.14} $$
For the capacity metric function $\rho^{\omega}_{p,F_0}$ to be a metric, we must ensure that
$$ \begin{equation} \rho^{\omega}_{p,F_0}(x,x)=0 \end{equation} \tag{2.15} $$
for every point $x\in D'\setminus F_0$.

Proposition 2.6. Given $x\in D'\setminus F_0$, condition (2.15) holds if and only if

$$ \begin{equation} \lim_{r\to0} \operatorname{cap}\bigl(\bigl(\overline{B(x,r)}, F_0\bigr); L^1_p(D';\omega)\bigr)=0. \end{equation} \tag{2.16} $$

Proof. Since the condenser $(\{x\}, F_0)$ is a part of the condenser $(\overline{B(x,r)}, F_0)$, Property 1.2 yields
$$ \begin{equation*} \rho^{\omega}_{p,F_0}(x,x)\leqslant \lim_{r\to0}\operatorname{cap}^{1/p} \bigl(\bigl(\overline{B(x,r)}, F_0\bigr); L^1_p(D';\omega)\bigr). \end{equation*} \notag $$
Granted (2.16), this implies (2.15).

Suppose now that (2.15) holds: $\rho^{\omega}_{p,F_0}(x,x)=\operatorname{cap}^{1/p}((\{x\}, F_0); L^1_p(D';\omega))=0$. By the definition of capacity, for every $\varepsilon\in(0,1/2)$, there exists a function $u_\varepsilon\in \operatorname{Lip}_{\mathrm{loc}}(D')$ such that $u_\varepsilon(y)\in [0,1]$ for all $y\in D'$, while $u_\varepsilon\vert_{F_0}=0$, $u_\varepsilon(x)=1$, and

$$ \begin{equation} \int_{D'}|\nabla u_\varepsilon |^p(y)\omega(y)\,dy<\varepsilon. \end{equation} \tag{2.17} $$
Since $x$ is an interior point of $\{y\in D'\colon u_\varepsilon(y)>1-\varepsilon\}$, we have $B(x,r_0)\subset \{y\in D'$: $u_\varepsilon(y)>1-\varepsilon\}$ for some ball $B(x,r_0)$. Consequently, the function
$$ \begin{equation*} \frac{\min(u_\varepsilon(y),1-\varepsilon)}{1-\varepsilon} \end{equation*} \notag $$
is admissible for the capacity of the condenser $(\overline{B(x,r)}, F_0)$ provided that $r\in (0,r_0)$. Therefore,
$$ \begin{equation*} \begin{aligned} \, \operatorname{cap}\bigl(\bigl(\overline{B(x,r)}, F_0\bigr); L^1_p(D';\omega)\bigr) &\leqslant \frac1{(1-\varepsilon)^p}\int_{D'} \bigl|\nabla\bigl(\min(u_\varepsilon(y),1-\varepsilon)\bigr)\bigr|^p\omega(y)\,dy \\ &\leqslant \frac1{(1-\varepsilon)^p}\int_{D'} |\nabla u_\varepsilon|^p(y)\omega(y)\,dy\leqslant \frac{\varepsilon}{(1-\varepsilon)^p}< 2^p\varepsilon \end{aligned} \end{equation*} \notag $$
by (2.17). Since $\varepsilon\in(0,1/2)$ is arbitrary, (2.16) is justified.

This completes the proof of Proposition 2.6.

Observe that (2.16) always holds in the case $q \leqslant p \leqslant n$ and $\omega\equiv1$. In the case of a nontrivial weight function condition (2.15) need not hold, see Examples 2.7 and 2.8.

Example 2.7 [50; Example 2.22]. Consider the domain $D' = B(0,2)$ with the weight $\omega(x) = |x|^{\alpha}$, where $\alpha> -n$, and $p>1$. The capacity of the condenser $\mathcal E=(\overline{B(0,r)}, B(0,1))$ with $0<r<1$ in the space $L_p(D';\omega)$, where the weight function $\omega$ belongs to the special class of weight functions called admissible in [50], is

$$ \begin{equation*} \begin{aligned} \, &\operatorname{cap}\bigl(\bigl(\overline{B(0,r)},B(0,1)\bigr);L^1_p(D';\omega)\bigr) \\ &\qquad= \begin{cases} c(n,p,\alpha) |1-r^{(p-n-\alpha)/(p-1)}|^{1-p} &\text{for }p-n-\alpha\ne0, \\ \sigma_{n-1}\biggl(\ln\dfrac1r\biggr)^{1-p} &\text{for }p-n-\alpha=0, \end{cases} \end{aligned} \end{equation*} \notag $$
where $\sigma_{n-1}$ is the measure of the unit $(n-1)$-dimensional sphere in $\mathbb R^n$, while $c(n,p,\alpha)$ is a constant depending only on $n$, $p$, and $\alpha$. Since
$$ \begin{equation*} \operatorname{cap}\bigl(\bigl(\overline{B(0,r)},B(0,1)\bigr);L^1_p(D';\omega)\bigr) \to \operatorname{cap}\bigl(\bigl(\{0\},B(0,1)\bigr);L^1_p(D';\omega)\bigr)\quad \text{as}\quad r\to 0, \end{equation*} \notag $$
the definition of the capacity metric function yields $\rho^{\omega}_{p,S(0,1)}(0,0)\neq 0$ if $p-n-\alpha>0$.

In the following example, we construct a weight function for which condition (2.15) is violated on a countable dense subset of $D'$.

Example 2.8. Consider an arbitrary bounded domain $D' \subset\mathbb R^n$, a continuum $F_0$, and a number $\alpha$ satisfying $p-n-\alpha>0$. To each point $x_i$ of some countable dense subset of $D'$ associate the function

$$ \begin{equation*} D'\ni x\mapsto \omega_i(x)= \begin{cases} \omega(x-x_i) &\text{if }x\in B(x_i,2)\cap D', \\ 2^{\alpha} &\text{if } x\in D'\setminus B(x_i,2), \end{cases} \end{equation*} \notag $$
where $\omega$ is the weight function of Example 2.7. As the weight function on the domain $D'$ consider
$$ \begin{equation*} D'\ni x\mapsto \sigma(x)= \sum_{i=1}^\infty \frac{1}{2^i}\omega_i(x). \end{equation*} \notag $$
It is not difficult to check that the function $\sigma$ is integrable on $D'$. Fix an index $j\in\mathbb N$ and a function $u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\sigma)$ admissible for the capacity $\operatorname{cap}\bigl((\{x_j\}, F_0); L^1_p(D';\omega)\bigr)$. In view of the inequality
$$ \begin{equation*} \frac{1}{2^{ip}}\int_{D'}|\nabla u(x)|^p\omega_i(x)\,dx\leqslant \int_{D'}|\nabla u(x)|^p\sigma(x)\,dx, \end{equation*} \notag $$
which is valid for every admissible function $u$ mentioned above, the left-hand side of the last inequality is separated from zero by some constant independent of $u$. Therefore,
$$ \begin{equation*} \rho^{\sigma}_{p,F_0}(x_j,x_j)=\operatorname{cap}^{1/p}\bigl((\{x_j\}, F_0); L^1_p(D';\sigma)\bigr) \ne0 \end{equation*} \notag $$
for every index $j\in\mathbb N$.

Example 2.9. Consider a bounded domain $D' \subset\mathbb R^n$, a point $x\in D'$, a continuum $F_0 \subset D' \setminus B(x, e^{-1})$, and a weight $\omega\colon D' \to [1,\infty)$ with $\omega \in \mathrm{BMO}(D')$. For $0<r<e^{-2}$ define the function

$$ \begin{equation*} u_r(y) = \begin{cases} 0 &\text{ if } y\in D' \setminus B(x, e^{-1}), \\ \dfrac{\log(\log (1/|y|))}{\log(\log(1/r))} &\text{ if } y\in D'\cap (B(x, e^{-1})\setminus B(x, r)), \\ 1 &\text{ if } y\in D' \cap B(x, r). \end{cases} \end{equation*} \notag $$
It is not difficult to verify that $u_r$ belongs to the class of admissible functions $\mathcal{A}(B(x,r)\cap D', F_0)$. Then the definition of capacity yields
$$ \begin{equation*} \begin{aligned} \, \rho^{\omega}_{n,F_0}(x,x) &= \operatorname{cap}\bigl((\{x\}, F_0); L^1_{n}(D'; \omega)\bigr) = \lim_{r\to 0}\operatorname{cap}\bigl( \bigl(B(x,r)\cap D', F_0\bigr); L^1_{n}(D';\omega)\bigr) \\ &\leqslant \lim_{r\to 0} \int_{D'} |\nabla u_r(y)|^n \omega(y) \,dy = 0. \end{aligned} \end{equation*} \notag $$
The last equality holds thanks to the following estimate for $\omega \in \mathrm{BMO}(B(x,1))$ [21; Lemma 5.2]:
$$ \begin{equation*} \begin{aligned} \, \int_{D'} |\nabla u_r(y)|^n \omega(y) \,dy &\leqslant \frac{1}{\log(\log(1/r))} \int_{B(x, e^{-1}) \setminus B(x, r)} \frac{\omega(y) \,dy}{|y|^n (\log(1/|y|))^n} \\ &\leqslant \frac{C}{\log(\log(1/r))}, \end{aligned} \end{equation*} \notag $$
where the constant $C$ depends only on $n$ and $\omega$, but is independent of $r$.

Examples 2.72.9 show that condition (2.15) depends on the properties of the weight function $\omega$.

Henceforth, denote by $d(x,y)$ the Euclidean distance between two points $x,y\,{\in}\,\mathbb R^n$.

Proposition 2.10. Consider a homeomorphism $f\colon D' \to D$ belonging to the class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant2$ for $n=2$.

(1) If $y\in D'\setminus F_0$ and $\rho^{\omega}_{p,F_0}(z_m,y)\to 0$ as $m\to\infty$ in the domain $D'\setminus F_0$, then

(2) Provided with (2.15) at $y\in D'\setminus F_0$, the convergence $d(z_m,y)\to0$ as $m\to\infty$ implies the convergence $\rho^{\omega}_{p,F_0}(z_m,y)\to 0$ with respect to the capacity $(\omega,p)$-metric function $\rho^{\omega}_{p,F_0}$ in the domain $D'\setminus F_0$.

Proof. (1) By Definition 2.3, for each $m\in \mathbb N$, there exists a continuous curve $\gamma_m\colon [0,1]\to D'\setminus F_0$ with endpoints $z_m=\gamma_m(0)$, $y=\gamma_m(1)\in D'\setminus F_0$ such that
$$ \begin{equation} \operatorname{cap}^{1/p}\bigl((\overline{\gamma_m}, F_0); L^1_p(D';\omega)\bigr) \leqslant 2\rho^{\omega}_{p,F_0}(z_m,y), \end{equation} \tag{2.18} $$
where $\overline{\gamma_m}=\gamma_m([0,1])$ stands for the image of the curve $\gamma_m\colon [0,1]\to D'\setminus F_0$. Using the inequality
$$ \begin{equation*} \operatorname{cap}^{1/p}\bigl((\{y\}, F_0); L^1_p(D';\omega)\bigr) \leqslant \operatorname{cap}^{1/p}\bigl((\overline{z_my}, F_0); L^1_p(D';\omega)\bigr), \end{equation*} \notag $$
valid for all $m\in \mathbb N$, from (2.18) and the condition $\rho^{\omega}_{p,F_0}(z_m,y)\to 0$ as $m\to\infty$ in the domain $D'\setminus F_0$, we infer that
$$ \begin{equation*} \operatorname{cap}^{1/p}\bigl((\{y\}, F_0); L^1_p(D';\omega)\bigr)=0. \end{equation*} \notag $$
Furthermore, from (2.9) and the condition $\rho^{\omega}_{p,F_0}(z_m,y)\to 0$ as $m\to\infty$ we find that $\rho_{q,f(F_0)}(f(z_m),f(y))\to 0$ as $m\to\infty$. By Lemma 2.1, the latter is possible if and only if $f(z_m)\to f(y)$ as $m\to\infty$. Hence, $z_m\to y$ as $m\to\infty$.

(2) Assume that condition (2.15) holds at $y\in D'\setminus F_0$ and $d(z_m,y)\to0$ as $m\to\infty$ for some sequence $z_m\in D'\setminus F_0$. On assuming condition (2.15), Proposition 2.6 implies that

$$ \begin{equation} \lim_{r\to0} \operatorname{cap}^{1/p}\bigl(\bigl(\overline{B(y,r)}, F_0\bigr); L^1_p(D';\omega)\bigr)=0. \end{equation} \tag{2.19} $$
For $z_m\in B(y,r)$, from the properties of capacity, we infer that
$$ \begin{equation*} \rho^{\omega}_{p,F_0}(z_m,y)\leqslant \operatorname{cap}^{1/p}\bigl(\bigl(\overline{B(y,r)}, F_0\bigr); L^1_p(D';\omega)\bigr), \end{equation*} \notag $$
and hence $\rho^{\omega}_{p,F_0}(z_m,y)\to 0$ as $m\to \infty$.

Proposition is proved.

Given a set $B\subset\mathbb R^n$, define the distance $\operatorname{dist}(y,B)$ from a point $y\in\mathbb R^n$ to $B$ as $\inf_{z\in B}d(y,z)$, where $d(\,{\cdot}\,,{\cdot}\,)$ is the Euclidean distance. The following proposition generalizes Proposition 2.10.

Proposition 2.11. Consider a homeomorphism $f\colon D' \to D$ belonging to the class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant2$ for $n=2$. If $\{y_l\in D'\setminus F_0\}$, for $l\in \mathbb N$, is a fundamental sequence with respect to the metric function $\rho^{\omega}_{p,F_0}$, while $y$ is one of its partial limits in the topology of the extended space $\overline{\mathbb R^n}$, then the following claims hold:

(1) if $y\in D'\setminus F_0$, then $d(y_l,y)\to 0$ as $l\to \infty$;

(2) if $y\in F_0$, then $d(y_l,y)\to 0$ as $l\to \infty$;

(3) if $y\in \partial D'$ and the sequence $\{y_{l}\in D'\}$ is bounded, we have $\operatorname{dist}(y_l, \partial D')\to 0$ as $l\to \infty$;

(4) if $\{y\}=\overline{\mathbb R^n}\setminus \mathbb R^n$, either $y_l\to y$ as $l\to \infty$ in the topology of $\overline{\mathbb R^n}$, or $\varliminf_{\,l\to \infty}d(y_l,0)<\infty$ and $\lim_{k\to \infty}\operatorname{dist}(y_{l_k}, \partial D')=0$ for every subsequence $\{y_{l_k}\in D'\}$ bounded in $\mathbb R^n$.

Proof. Let us prove the claims of Proposition 2.11 one by one.

(1) Take a fundamental sequence $\{y_l\in D'\setminus F_0\}$, for $l\in \mathbb N$, with respect to the metric function $\rho^{\omega}_{p,F_0}$ and its subsequence $\{y_{l_k}\in D'\setminus F_0\}$, for $k\in \mathbb N$, converging in the topology of the Euclidean space $\mathbb R^n$ to some point $y\in D'\setminus F_0$ as $k\to \infty$. By (2.9), the sequence $\{f(y_l)\in D\setminus f(F_0)\}$, $l\in \mathbb N$, is also fundamental with respect to $\rho_{q,f(F_0)}$. In addition, since $f$ is continuous at $y\in D'\setminus F_0$, we have the convergence $f(y_{l_k})\to f(y)$ as $k\to \infty$. Lemma 2.1 implies the convergence $\rho_{q,f(F_0)}(f(y_{l_k}),f(y))\to 0$ as $k\to \infty$. Since the sequence $\{f(y_l)\in D\setminus f(F_0)\}$, for $l\in \mathbb N$, is fundamental with respect to the metric function $\rho_{q,f(F_0)}$, we see that $\rho_{q,f(F_0)}(f(y_{l}),f(y))\to 0$ as $l\to \infty$. Moreover, $f(y_{l})\to f(y)$ as $l\to \infty$, again by Lemma 2.1. Since $f^{-1}$ is continuous at $f(y)$, we infer that $y_{l}\to y$ as $l\to \infty$.

(2) Take a fundamental sequence $\{y_l\in D'\setminus F_0\}$, $l\in \mathbb N$, with respect to the metric function $\rho^{\omega}_{p,F_0}$ and its subsequence $\{y_{l_k}\in D'\setminus F_0\}$, $k\in \mathbb N$, converging in the topology of the Euclidean space $\mathbb R^n$ to some point $y\in F_0$ as $k\to\infty$. The second claim will be justified once we verify that the stated properties contradict the existence of a subsequence $\{y_{l_j}\}$, $j\in \mathbb N$, such that $d(y_{l_j},y)\geqslant 1/\beta$ for all $j\in \mathbb N$, where $\beta>1$ is some number. Indeed, if such a subsequence exists, then

$$ \begin{equation} d(f(y_{l_j}),f(y))\geqslant \frac{1}{\beta'} \end{equation} \tag{2.20} $$
for all $j\in \mathbb N$, where $\beta'>1$ is some number, whose existence is ensured by the locally uniform continuity of the homeomorphism $f$. On the other hand, the sequence $\{f(y_l)\in D\setminus f(F_0)\}$, for $l\in \mathbb N$, is fundamental with respect to the metric function $\rho_{q,f(F_0)}$. Applying the subordination principle, see Property 1.2, we infer that this sequence is also fundamental with respect to the metric function $\rho_{q,K}$ for an arbitrary compact set $K\subset \operatorname{int}f(F_0)$ with nonempty interior. By Lemma 2.1, the sequence $f(y_{l})$ converges to $f(y)\notin K$ as $l\to \infty$. The latter contradicts (2.20).

(3) Take a partial limit $y=\lim_{j\to \infty} y_{l_j}\in \partial D'$ and assume on the contrary that there exists a subsequence $\{y_{l_k}\}$, for $k\in \mathbb N$, such that $\operatorname{dist}(y_{l_k}, \partial D')\geqslant \beta_0>0$ for all $k\in \mathbb N$, where $\beta_0$ is some number. By the latter property, since $\{y_{l}\}$ is bounded, we may assume that the subsequence $\{y_{l_k}\}$ converges to some $z\in D'$. Consequently, the hypotheses of the first claim are fulfilled, and so $y_l\to z$ as $l\to\infty$, which contradicts the property $\lim_{j\to \infty} y_{l_j}=y \in \partial D'$.

(4) If under the condition $\{y\}=\overline{\mathbb R^n}\setminus \mathbb R^n$ we have $\varliminf_{\,l\to \infty}d(y_l,0)=\infty$, then $y_l\to y$ as $l\to \infty$ in the topology of $\overline{\mathbb R^n}$.

Assume that if $\varliminf_{\,l\to \infty}d(y_l,0)<\infty$, then $\varlimsup_{k\to \infty}\operatorname{dist}(y_{l_k}, \partial D')> 0$ for some bounded subsequence $\{y_{l_k}\}$, for $k\in \mathbb N$. Then some subsequence $y_{l_{k_j}}\to z\in D'$ as $j\to\infty$. The first claim yields $y_{l}\to z\in D'$ as $l\to\infty$, which contradicts the hypotheses of claim (4). Proposition is proved.

Remark 2.12. Below we consider the fundamental sequences with respect to the metric function $\rho^{\omega}_{p,F_0}$ which satisfy just one of claims (1), (3), and (4) of Proposition 2.11.

2.2. Capacity metric and completion of the domain

Definition 2.13. Denote by $D'_{\rho,p}$ the collection of points $\{y\in D'\setminus F_0\}$ with the capacity metric function $\rho^{\omega}_{p,F_0}$.

Definition 2.14. Two fundamental sequences $\{y_{l}\in D'_{\rho,p}\}$ and $\{z_{l}\in D'_{\rho,p}\}$, $l\in \mathbb N$, with respect to the capacity metric function $\rho^{\omega}_{p,F_0}$ are called equivalent whenever $\rho^{\omega}_{p,F_0}(y_l,z_l)\to 0$ as $l\to \infty$.

Define a new metric space $({\widetilde D}'_{\rho,p}, \widetilde\rho^{\,\omega}_{p,F_0})$:

(1) its elements are the classes of equivalent fundamental sequences, and

(2) the distance between two elements $X, Y\in {\widetilde D}'_{\rho,p}$ equals

$$ \begin{equation} \widetilde\rho^{\,\omega}_{p,F_0}(X,Y)=\lim_{l\to\infty}\rho^{\omega}_{p,F_0}(x_l,y_l), \end{equation} \tag{2.21} $$
where $\{x_l\}$ and $\{y_l\}$ are fundamental sequences in $X$ and $Y$, respectively.

Assume henceforth that the metric space $({\widetilde D}'_{\rho,p}, \widetilde\rho^{\,\omega}_{p,F_0})$ is nonempty.

By analogy with the Hausdorff completion theorem, see [57; Ch. 2, § 6] and [58; § 21.3], for instance, we can prove the following statement.

Proposition 2.15. The following claims hold:

(1) the metric function (2.21) is independent of the choice of fundamental sequences $\{x_l\}$ in the class $X$ and $\{y_l\}$ in the class $Y$;

(2) the metric function (2.21) in Definition 2.14 satisfies on ${\widetilde D}'_{\rho,p}$ the axioms of a metric space;

(3) the space $({\widetilde D}'_{\rho,p}, \widetilde\rho^{\,\omega}_{p,F_0})$ includes a subset isometric to the metric space

$$ \begin{equation*} \{y\in D'\setminus F_0\mid \rho^{\omega}_{p,F_0}(y,y)=0\} \end{equation*} \notag $$
with the metric $\rho^{\omega}_{p,F_0}$.

Proof. Recall how we identify the points of $\{y\in D'\setminus F_0\mid \rho^{\omega}_{p,F_0}(y,y)=0\}$ with the metric $\rho^{\omega}_{p,F_0}$ and those of some subset in $({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$.

Associate to a point $y\in {D}'_{\rho,p}$ the equivalence class $i(y)\in {\widetilde D}'_{\rho,p}$ containing the constant sequence $\{y,y,\dots, y,\dots\}$. It is obvious that

$$ \begin{equation*} \widetilde\rho^{\,\omega}_{p,F_0}(i(x),i(y))=\rho^{\omega}_{p,F_0}(x,y), \end{equation*} \notag $$
so that the embedding
$$ \begin{equation*} i\colon {D}'_{\rho,p}\to {\widetilde D}'_{\rho,p} \end{equation*} \notag $$
is an isometry. Proposition is proved.

Definition 2.16. Refer to the metric space $({D}'_{\rho,p}, \rho^{\omega}_{p,F_0})$ to the subset $\{y\in D'\setminus F_0\mid \rho^{\omega}_{p,F_0}(y,y)=0\}$ with the metric $\rho^{\omega}_{p,F_0}$.

Proposition 2.17. Consider a homeomorphism $f\colon D' \to D$ that belongs to $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant2$ for $n=2$. Fix an equivalence class $h\in {\widetilde D}'_{\rho,p}$ and take an arbitrary fundamental sequence $\{y_l\}$ in this class. Then the following behavior of $\{y_l\}$ is possible:

(1) (a) $y_l\to y\in D'\setminus F_0$ as $l\to\infty$ in the Euclidean metric and the limit $y$ is unique, meaning that it is independent of the choice of sequence in $h$;

(b) $y_l\to y\in F_0$ as $l\to\infty$ in the Euclidean metric and the limit $y$ is unique;

(2) otherwise, depending on the choice of fundamental sequence in $h$, the following cases are possible:

(a) $\varlimsup_{l\to \infty}d(y_l,0)<\infty$ and then $\operatorname{dist}(y_l, \partial D')\to 0$ as $l\to \infty$;

(b) $\varlimsup_{l\to \infty}d(y_l,0)=\infty$ and $\varliminf_{\,l\to \infty}d(y_l)<\infty$, and then

$$ \begin{equation*} \lim_{l\to \infty}\operatorname{dist}(y_{l_k}, \partial D')=0 \end{equation*} \notag $$
for every bounded subsequence $\{y_{l_k}\in D'\}$ of $\mathbb R^n$;

(c) $\lim_{l\to \infty}d(y_l,0)=\infty$.

Proof. The fundamental sequence $\{y_l\}$ of class $h\in {\widetilde D}'_{\rho,p}$ bounded in $\mathbb R^n$ satisfies the hypotheses of Proposition 2.11, and so its claims (1)–(4) can hold for it. It remains to verify that the same claims hold for every bounded sequence $\{z_l\}$ of class $h\in {\widetilde D}'_{\rho,p}$.

Indeed, the sequence $y_1,z_1,y_2,z_2,\dots,y_n,z_n,\dots$ is fundamental with respect to the metric function $\rho^{\omega}_{p,F_0}$, bounded in $\mathbb R^n$, and has accumulation point $y$, which lies either in $D'$ or in $\partial D'$.

In the first case by claim (1) of Proposition 2.11 some subsequence of the sequence

$$ \begin{equation} y_1,\ z_1,\ y_2,\ z_2,\ \dots,\ y_n,\ z_n,\ \dots \end{equation} \tag{2.22} $$
converges to $y\in D'$. Hence, both sequences (2.22) and $\{z_l\}$ converge to $y$ as $l\to\infty$. In the second case no subsequence $\{z_{l_k}\}$ of the sequence $\{z_l\}$ can converge to any point $z\in D'$, because similar arguments would yield the impossible coincidence $y=z$. Then if the sequence $\{z_l\}$ is bounded, then claim (3) of Proposition 2.11 shows that $\operatorname{dist}(z_l, \partial D')\to 0$ as $l\to \infty$.

If some sequence $\{y_l\}$ of class $h\in {\widetilde D}'_{\rho,p}$ is not bounded, then we should apply claim (4) of Proposition 2.11 to justify claims (2)(b) and (2)(c) of Proposition 2.17.

Now take another fundamental sequence $\{z_l\}$, $l\in \mathbb N$, in the same class $h\in {\widetilde D}'_{\rho,p}$. Applying Proposition 2.11 to it, we conclude that $z_l$ cannot converge to any point $z\in D'$, as otherwise $y_l$ would also converge to $z\in D'$ as $l\to \infty$. Thus, for the sequence $z_l$, only claims (3) or (4) of Proposition 2.11 can hold, which proves Proposition 2.17.

The following example shows that each of the possibilities (a), (b), and (c) of part 2 of Proposition 2.17 can be realized in various sequences of the same class.

Example 2.18 (ridge domain). In [18], [26], and [45] there is an example of a simply- connected domain with nontrivial boundary elements, although the domain is locally connected at all boundary points of the Euclidean boundary. For $q=p=n=3$ and $\omega \equiv 1$ consider the ridge domain

$$ \begin{equation*} D' = \{x=(x_1,x_2,x_3) \colon |x_2| < x_1^{\alpha},\, \alpha >2, \, 0<x_1<1, \, 0<x_3<\infty\}. \end{equation*} \notag $$
Take the sequences
$$ \begin{equation*} y^1_l = \biggl(\frac{1}{l},\frac{1}{2l^{\alpha}},1\biggr), \qquad y^3_l = \biggl(\frac{1}{l},\frac{1}{2l^{\alpha}},l\biggr), \end{equation*} \notag $$
and define the sequence $\{y^2_l\}$ by alternating $\{y^1_l\}$ and $\{y^3_l\}$:
$$ \begin{equation*} y^2_{2l} = \biggl(\frac{1}{l},\frac{1}{2l^{\alpha}},1\biggr)\quad \text{and}\quad y^2_{2l+1} = \biggl(\frac{1}{l},\frac{1}{2l^{\alpha}},l\biggr). \end{equation*} \notag $$
Then $\{y^1_l\}$, $\{y^2_l\}$, and $\{y^3_l\}$ satisfy conditions (2)(a), (2)(b), and (2)(c) of Proposition 2.17, respectively, since $y_l^1,y_{2l}^1 \to (0,0,1)$ and $\lim_{l\to\infty} d(y_{2l+1}^2,0) =\lim_{l\to\infty} d(y_l^3,0) = \infty$. In addition, the chosen sequences lie in the same equivalence class $h \in \widetilde{D}'_{\rho,3}$. Here the metric $\rho^{\omega}_{p,F_0}$ is defined with respect to the Sobolev space $L^1_3(D')$ and $F_0\subset D'$ is an arbitrary continuum with nonempty interior.

With the new notation and concepts, we can interpret Proposition 2.4 as follows.

Theorem 2.19 (extension of $\mathcal Q_{p,q}$-homeomorphisms). Consider a homeomorphism $f\colon D' \to D$ of class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$. Then

(1) the mapping $f\colon D' \to D$ induces the Lipschitz mapping

$$ \begin{equation*} f\colon \bigl({D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}\bigr)\to \bigl({D}_{\rho,q},\widetilde\rho_{q,f(F_0)}\bigr) \end{equation*} \notag $$
of metric spaces, with the estimate for metric distances
$$ \begin{equation} \begin{cases} \widetilde\rho_{p,f(F_0)}\bigl(f(x),f(y)\bigr) \leqslant K_p\widetilde\rho^{\,\omega}_{p,F_0}(x,y) &\textit{if } q=p, \\ \widetilde\rho_{q,f(F_0)}\bigl(f(x),f(y)\bigr) \leqslant \Psi_{p,q}(D'\setminus F_0)^{1/\sigma} \widetilde\rho^{\,\omega}_{p,F_0}(x,y) &\textit{if } q<p, \end{cases} \end{equation} \tag{2.23} $$
for all points $x,y\in {D}'_{\rho,p}$, where $1/\sigma=1/q-1/p$;

(2) the mapping $f\colon D' \to D$ induces the Lipschitz mapping

$$ \begin{equation*} \widetilde f\colon \bigl({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}\bigr) \to \bigl({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}\bigr) \end{equation*} \notag $$
of the “completed” metric spaces: to each element $X\in( {\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$ associate the element $\widetilde f(X)\in ({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)})$ containing the fundamental sequence $\{f(x_l)\}$, where $\{x_l\}\in X$, with the estimate for metric distances
$$ \begin{equation} \begin{cases} \widetilde\rho_{p,f(F_0)}\bigl(\widetilde f(X),\widetilde f(Y)\bigr) \leqslant K_p\widetilde\rho^{\,\omega}_{p,F_0}(X,Y) &\textit{if } q=p, \\ \widetilde\rho_{q,f(F_0)}\bigl(\widetilde f(X),\widetilde f(Y)\bigr) \leqslant \Psi_{p,q}(D'\setminus F_0)^{1/\sigma} \widetilde\rho^{\,\omega}_{p,F_0}(X,Y) &\textit{if } q<p, \end{cases} \end{equation} \tag{2.24} $$
for $x,y\in {\widetilde D}'_{\rho,p}$.

Proof. Claim (1) and (2.23) follow directly from Proposition 2.4, while (2.24) follows from Definition (2.21) of the metric distance between the elements of “completed” spaces. Indeed, if a sequence $\{x_l\}$ belongs to $X\in {\widetilde D}'_{\rho,p}$, then by (2.23) the sequence $\{f(x_l)\}$ is fundamental with respect to the metric function $\widetilde\rho_{q,f(F_0)}$. We call the class of equivalent sequences containing $\{f(x_l)\}$ the image of the class $X$, and denote the resulting mapping by $\widetilde f$. Deducing that
$$ \begin{equation*} \widetilde\rho_{p,f(F_0)}\bigl(\widetilde f(X),\widetilde f(Y)\bigr) =\lim_{l\to\infty}\widetilde\rho_{p,f(F_0)}\bigl(\widetilde f(x_l),\widetilde f(y_l)\bigr) \end{equation*} \notag $$
and using Definition (2.21), as well as (2.23), we obtain the claim.

Therefore, Proposition 2.19 determines the extended mapping $\widetilde f$.

Definition 2.20. Consider a homeomorphism $f\colon D'{\to}\, D$ of class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$. Denote by $\widetilde f\colon ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})\to({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)})$ the extension of $f$ to the “completed” metric spaces: to each $X\in({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$ we associate $\widetilde f(X)\in ({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)})$ containing the fundamental sequence $\{f(x_l)\}$.

2.3. Capacity boundary. Boundary correspondence of mappings

By Proposition 2.17, in the topology of the extended space $\mathbb R^n$ the limit points of the fundamental sequence $\{y_l\}$, $l\in \mathbb N$, of some class $h\in {\widetilde D}'_{\rho,p}$ can be

(1a) the points $y\in D'\setminus F_0$: in this case $y_l\to y\in D'\setminus F_0$ as $l\to\infty$ in the Euclidean metric;

(1b) the points $y\in F_0$: in this case $y_l\to y\in F_0$ as $l\to\infty$ in the Euclidean metric.

Otherwise, depending on the choice of fundamental sequence $\{y_l\}$, $l\in \mathbb N$, of class $h$, the possible variants are

(2a) the points $y\in \partial D'$;

(2b) the point $y=\infty$.

Clearly, in case (1a) we can identify the class $h\in {\widetilde D}'_{\rho,p}$ with some point $y\in D'\setminus F_0$, while in case (1b), with some point $y\in F_0$.

With this observation at hand, define the concept of the capacity boundary. By claim (3) of Proposition 2.15, the points of the metric space $({D}'_{\rho,p},\rho^{\omega}_{p,F_0})$ are identified with those in some subset of $({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$ so that the embedding

$$ \begin{equation*} i\colon {D}'_{\rho,p}\to {\widetilde D}'_{\rho,p} \end{equation*} \notag $$
is an isometry. Henceforth we identify ${D}'_{\rho,p}$ with the image $i({D}'_{\rho,p})$ in ${\widetilde D}'_{\rho,p}$.

Definition 2.21. The complement

$$ \begin{equation*} H^{\omega}_{\rho,p}(D') = {\widetilde D}'_{\rho,p} \setminus {D}'\quad \bigl(H_{\rho,q}(D) = {\widetilde D}_{\rho,q} \setminus {D}\bigr) \end{equation*} \notag $$
is called the capacity boundary of $D'$ (respectively, $D$). The metric on the boundary is induced from the ambient space. The capacity boundary elements of the domain $D'$ or $D$ are the points of the capacity boundary $H^{\omega}_{\rho,p}(D')$ or $H_{\rho,q}(D)$.

Theorem 2.22 (boundary correspondence of $\mathcal Q_{p,q}$-homeomorphisms). Consider a homeomorphism $f\colon D' \to D$ of class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$. Then the restriction $\widetilde f\mid_{H^\omega_{\rho,p}(D')}$ is a Lipschitz mapping

$$ \begin{equation} \widetilde f\mid_{H^\omega_{\rho,p}(D')}\colon \bigl(H^\omega_{\rho,p}(D'), \widetilde\rho^{\,\omega}_{p,F_0}\bigr) \to \bigl(H_{\rho,q}(D), \widetilde\rho_{q,f(F_0)}\bigr) \end{equation} \tag{2.25} $$
of capacity boundaries.

Proof. Take the mapping $\widetilde f\colon ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})\to({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)})$ of Theorem 2.19. Then the restriction $\widetilde f\mid_{H^\omega_{\rho,p}(D')}$ is the Lipschitz mapping
$$ \begin{equation} \widetilde f\mid_{H^\omega_{\rho,p}(D')}\colon \bigl(H^\omega_{\rho,p}(D'), \widetilde\rho^{\,\omega}_{p,F_0}\bigr)\to \bigl({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)}\bigr). \end{equation} \tag{2.26} $$
To prove the claim, it remains to verify that the image of this mapping lies in $(H_{\rho,q}(D), \widetilde\rho_{q,f(F_0)})$.

Assume on the contrary that there exists a boundary element $h{\kern1pt}{\in}\, (H^\omega_{\rho,p}(D'), \widetilde\rho^{\,\omega}_{p,F_0})$ such that $\widetilde f(h)= y\in (D,\widetilde\rho_{q,f(F_0)})$. Then there exists a sequence $\{x_l\}\in h$, where $h\in ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$, such that $f(x_l)\to y$ in the metric space $(D_{\rho,q},\widetilde\rho_{q,f(F_0)})$. By Proposition 2.10, the sequence $f(x_l)$ converges to $y\in D$ in the Euclidean metric as well. Therefore, $f^{-1}( f(x_l))=x_l$ converges to $\varphi(y)\in D'$ in $\mathbb{R}^n$. Proposition 2.17 shows that every sequence $\{z_l\}\in h$ converges to $\varphi(y)\in D'$ in the Euclidean metric, and so in the metric space $({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$ as well, see Proposition 2.10, which obviously contradicts the initial assumption. Theorem is proved.

2.4. Support of a boundary element

In this section, we fix an arbitrary number $p$ satisfying $n-1< p\leqslant n$ for $n\geqslant 3$ and $1\leqslant p\leqslant 2$ for $n=2$.

Definition 2.23. Given a domain $D'$ in $\mathbb R^n$, the support $\mathcal{S}_h$ of a boundary element $h \in H^\omega_{\rho,p}(D')$ is the set of all accumulation points in the topology of the extended space $\overline{\mathbb R^n}$ of all fundamental sequences with respect to the capacity metric lying in the equivalence class defining $h$.

Remark 2.24. Proposition 2.17 and Definition 2.21 show that no accumulation point of a sequence in $h \in H^\omega_{\rho,p}(D')$ fundamental with respect to the capacity metric belongs to $D'$. Therefore,

$$ \begin{equation*} \mathcal{S}_h\subset \partial D'\cup\{\infty\}. \end{equation*} \notag $$

Proposition 2.25. If $D'$ is a domain in $\mathbb R^n$, then

(1) the support $\mathcal{S}_h$ of a boundary element $h \in H^\omega_{\rho,p}(D')$ coincides with the intersection $\bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'}$:

$$ \begin{equation} \mathcal{S}_h= \bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'}, \end{equation} \tag{2.27} $$
where the closure is taken in the topology of the extended space $\overline{\mathbb R^n}$;

(2) if $\rho^{\omega}_{p,F_0}(h_1,h_2)=0$ for two boundary elements $h_1,h_2 \in H^\omega_{\rho,p}(D')$, then $\mathcal{S}_{h_1}= \mathcal{S}_{h_2}$.

Proof. Split the proof into three stages.

(1) Fix a boundary element $h \in H^\omega_{\rho,p}(D')$. Let us verify the inclusion

$$ \begin{equation} \mathcal{S}_h \subset \bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'}. \end{equation} \tag{2.28} $$
By the definition of a boundary element $h \in H^\omega_{\rho,p}(D')$, there exists a fundamental sequence $\{y_l\}\in h$ with respect to the $(\omega,p)$-metric function with $\rho^{\omega}_{p,F_0}(y_l,h)\to 0$ as $l\to\infty$. For the sequence $\{y_l\in D'_{\rho,p}\}$ and its subsequences only the behavior described in Proposition 2.17 is possible:

(a) $y_l\to y\in D'\setminus F_0$ or $y_l\to y\in F_0$ as $l\to\infty$ in the Euclidean metric and the limit $y$ is unique, meaning independent of the choice of sequence in $h$;

(b) $\varlimsup_{l\to \infty}d(y_l,0)<\infty$ and then $\operatorname{dist}(y_l, \partial D')\to 0$ as $l\to \infty$;

(c) $\varlimsup_{l\to \infty}d(y_l,0)=\infty$ and $\varliminf_{\,l\to \infty}d(y_l,0)<\infty$, and then

$$ \begin{equation*} \lim_{l\to \infty}\operatorname{dist}(y_{l_k}, \partial D')=0 \end{equation*} \notag $$
for every subsequence $\{y_{l_k}\in D'\}$ bounded in $\mathbb R^n$;

(d) if $d(y_l,0)\to\infty$, then $\infty\in \mathcal{S}_h$.

Definition 2.21 excludes case (a). In cases (b)–(d) we have

$$ \begin{equation*} \mathcal{S}_h\subset \partial D'\cup\{\infty\}. \end{equation*} \notag $$
In these cases, for every $\varepsilon > 0$ the elements of the sequence $\{y_l\in D'\}$ starting with some index $l_0$ lie in $B_{\rho}(h,\varepsilon)\cap D'$ for all $l\geqslant l_0$. Thus the accumulation points of $\{y_l\in D'\}$ lie in the closure $\overline{B_{\rho}(h,\varepsilon) \cap D'}$ in the topology of the extended space $\overline{\mathbb R^n}$. Since we choose the fundamental sequence $\{y_l\}\in h$ for the boundary element $h$ arbitrarily, it follows that $\mathcal{S}_h \subset\overline{B_{\rho}(h,\varepsilon) \cap D'}$. The inclusion (2.28) is established as $\varepsilon > 0$ is arbitrary.

(2) In the case $\rho^{\omega}_{p,F_0}(h_1,h_2)=0$ the equivalence classes of fundamental sequences for the boundary elements $h_1$ and $h_2$ coincide. Hence, we conclude that the supports of $h_1$ and $h_2$ coincide.

(3) To justify (2.27), it remains to verify the reverse inclusion to (2.28):

$$ \begin{equation} \bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'} \subset \mathcal{S}_h. \end{equation} \tag{2.29} $$
Indeed, if $x\,{\in} \bigcap_{\varepsilon > 0} \overline{B_{\rho}(h,\varepsilon) \cap D'}$, then for each $l\in\mathbb N$ there exists $x_l\in B_{\rho}(h,1/l) \cap D'$ such that simultaneously $\rho^{\omega}_{p,F_0}(x_l,h)\to 0$ as $l\to\infty$ and (using Proposition 2.17 and extracting a subsequence if necessary) $x_l\to x$ in the topology of the extended space $\overline{\mathbb R^n}$. Therefore, the fundamental sequence $\{x_l\}$ with respect to the capacity metric determines a boundary element, which coincides with $h$. Thus, $x\in \mathcal{S}_h$ and (2.29) is established. The inclusions (2.28) and (2.29) are equivalent to (2.27). Proposition is proved.

Proposition 2.26. The support $\mathcal{S}_h$ of each boundary element $h\in H^\omega_{\rho,p}(D')$ is connected in the topology of the space $\overline{\mathbb R^n}$.

Proof. Assume on the contrary that for some boundary element $h\in H^\omega_{\rho,p}(D')$ there are two disjoint open sets $V,W\subset\overline{\mathbb R^n}$ with $\mathcal{S}_h\subset V\cup W$, while $\mathcal{S}_h\cap V\ne\varnothing$ and $\mathcal{S}_h\cap W\ne\varnothing$. Take two points $x\in\mathcal{S}_h\cap V$ and $y\in\mathcal{S}_h\cap W$ and fundamental sequences $\{x_m\},\{y_m\}\in h$ with respect to the capacity metric such that $x_m\to x$ and $y_m\to y$ as $m\to\infty$. There is a curve $\gamma_m\subset D'$ with endpoints $x_m$ and $y_m$ such that $\operatorname{cap}((\gamma_m, F_0); L^1_p(D';\omega))\to 0$ as $m\to\infty$. For all big enough $m$, starting with some there exists a point $z_m\in \gamma_m$ satisfying $z_m\notin V\cup W$. We emphasize that the sequence $\{z_m\}$, fundamental with respect to the capacity metric, belongs to the equivalence class $h$. Extracting a subsequence, we may assume that $z_m\to z_0$, where $z_0\in \overline{D'}\setminus (V\cup W)$; here the closure is taken in the topology of the extended space $\overline{\mathbb R^n}$. Since $z_0\notin \mathcal{S}_h$, we arrive at a contradiction with the definition of the support of a boundary element. Proposition is proved.

Proposition 2.27. Consider the support $\mathcal{S}_h$ of $h\,{\in}{\kern1pt} H^\omega_{\rho,p}(D')$. For every sequence $\{x_m\}\in h$ we have the convergence $x_m\to \mathcal{S}_h$ as $m \to \infty$ in the topology of the extended space $\overline{\mathbb R^n}$.

Proof. Proposition 2.25 excludes the possibility that $\mathcal{S}_h\cap D'\ne\varnothing$.

Suppose that $\mathcal{S}_h$ is bounded in $\mathbb R^n$ and $\mathcal{S}_h\subset \partial D'$. Suppose that there exists a subsequence $\{x_{m_k}\in D'\}$, for $k\in \mathbb N$, of some fundamental sequence $\{x_m\}\in h$ such that $d(x_{m_k},\mathcal{S}_h) \geqslant\alpha> 0$ for all $k\in \mathbb N$, where $\alpha$ is some constant. Then the sequence $\{x_{m}\}$ has an accumulation point at some positive distance from $\mathcal{S}_h$. This point must lie in the support of the boundary element $h$, which contradicts the connectedness of $\mathcal{S}_h$.

However, if the support $\mathcal{S}_h$ is unbounded and the sequence $x_m$ does not converge to $\mathcal{S}_h$ in the topology of the extended space $\overline{\mathbb R^n}$ then $\varliminf_{\,m\to\infty}x_m<\infty$. Consequently, there exists a finite accumulation point at some positive distance from $\mathcal{S}_h$. As in the previous case, we arrive at a contradiction with the connectedness of $\mathcal{S}_h$. Proposition is proved.

Proposition 2.28 (criterion for singleton support). Given a boundary element $h\in H^\omega_{\rho,p}(D')$ of the domain $D'$, the support $\mathcal{S}_h$ amounts to a single point if and only if for all fundamental sequences $\{x_m\},\{y_m\}\in h$ with respect to the capacity metric there exist curves $\overline{x_m y_{m}}$, for $m\in \mathbb N$, with $\operatorname{diam}(\overline{x_m y_{m}}) \to 0$ as $m\to \infty$.

Proof. Necessity. Suppose that $\mathcal{S}_h=\{x_0\}$. Assume on the contrary that there exist fundamental sequences $\{x_m\}$ and $\{y_m\}$ of class $h$ with respect to the capacity metric converging to $x_0$, curves $\gamma_{m} = \overline{x_m y_{m}}$ with
$$ \begin{equation} \operatorname{cap}^{1/p}\bigl((\gamma_{m}, F_0); L^1_p(D';\omega)\bigr)\to 0 \quad\text{as}\quad m\to \infty, \end{equation} \tag{2.30} $$
and a number $\alpha>0$ such that
$$ \begin{equation*} \operatorname{diam} \gamma_{m}\geqslant \alpha > 4d(x_m, y_{m})\quad\text{for all}\quad m\in\mathbb N \end{equation*} \notag $$
because $x_m\to x_0$ and $y_m\to x_0$ as $m\to\infty$. Then, for each $m\in\mathbb N$, there exists a point $z_{m} \in \gamma_{m}$ such that, on the one hand,
$$ \begin{equation} d(x_m,z_{m})> \frac{\alpha}{4}, \qquad d(y_{m},z_{m})> \frac{\alpha}{4} \end{equation} \tag{2.31} $$
and on the other hand, (2.7) and (2.30) yield $\rho^{\omega}_{p,F_0} (z_{m}, x_{m}) \to 0$ as $m\to \infty$. Hence, we infer that the sequence $\{z_{m}\}$, for $m\in \mathbb N$, is fundamental with respect to the capacity metric and belongs to the boundary element $h$. On the other hand, there exists a subsequence $\{z_{m_i}\}$, for $i\in \mathbb N$, converging to some point $z_0$; moreover, (2.31) implies that $z_0 \neq x_0$. Since $z_0\in \mathcal{S}_h$ by the definition of support, we arrive at a contradiction with its being a singleton.

Sufficiency. By contradiction, suppose that there are two sequences $\{x_m\}$ and $\{y_m\} \in h$ fundamental with respect to the capacity metric and converging to distinct points $x$ and $y$ of the support $\mathcal{S}_h$. By the hypotheses, there exist curves $\gamma_m = \overline{x_m y_m}$ such that $\operatorname{diam} \gamma_m \to 0$ as $m \to \infty$. In particular, $\operatorname{diam} \gamma_m\,{\geqslant}\, d(x_m, y_m)\,{\to}\, d(x, y)\,{>}\,0$ as $m \to \infty$, which, evidently, contradicts the property $\operatorname{diam} \gamma_m \to 0$ as $m \to \infty$ inferred from the assumption.

Proposition is proved.

2.5. Continuous extension of mappings of class $\mathcal{Q}_{p, q}(D',\omega;D)$ to the Euclidean boundary

In this section, we fix arbitrary numbers $q$ and $p$ satisfying $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$.

In what follows, we define domains $\mu$-connected at boundary points.

Definition 2.29 (connectedness properties [16], [18]). (1) A domain $D'$ is called locally connected at $x \in \partial D'$ if for every neighborhood $U$ of $x$ there is a neighborhood $V \subset U$ of this point such that $V \cap D'$ is connected.

(2) An unbounded domain $D'$ is called locally connected at $\infty$ if for every neighborhood $U$ of $\infty$ there is a neighborhood $V \subset U$ of this point such that $V \cap D'$ is connected.

(3) A domain $D'$ is called locally $\mu$-connected at $x \in \partial D'$, where $\mu\in\mathbb N$, if for every neighborhood $U$ of $x$ there is a neighborhood $V \subset U$ of this point such that $V\cap D'$ consists of $\mu$ connected components, each of which is locally connected at $x$. Observe that a domain $D'$ locally $1$-connected at $x \in \partial D'$ is precisely the domain $D'$ locally connected at $x \in \partial D'$.

(4) An unbounded domain $D'$ is called locally $\mu$-connected at $\infty$, where $\mu\in\mathbb N$, if for every neighborhood $U$ of $\infty$ there is a neighborhood $V \subset U$ of this point such that $V \cap D'$ consists of $\mu$ connected components, each of which is locally connected at $\infty$. In the case $\mu=1$ we obtain the domain $D'$ locally connected at $\infty$.

(5) A domain $D'$ is called finitely connected at $x \in \partial D'$ or $x=\infty$ whenever it is $\mu$-connected at $x$ for some $\mu\in\mathbb N$.

The following example demonstrates the appearance of domains which are multiply connected at boundary points.

Example 2.30 (slit ball). Let $D' = B(0,1) \setminus (\{0\}\times[0,1)^{n-1})$. It is not difficult to see that $D'$ is locally $2$-connected at each point $x\in \{0\}\times(0,1)^{n-1}$. If $\omega= 1$ is the trivial weight and $p=n$, then condition (2.37) is met for every point $x\in \{0\}\times(0,1)^{n-1}$, and $x$ lies in the support of two distinct boundary elements $h_{+},h_{-} \in H_{\rho,n}(D')$.

Let us present the methods of [16; Theorem 1.10] for describing connectedness alternative to Definition 2.29 and useful below.

Proposition 2.31. Given a domain $D'\in \mathbb R^n$ and its boundary point $x \in \partial D'$, the following statements are equivalent:

(1) $D'$ is locally $\mu$-connected at $x$;

(2) for every neighborhood $U$ of $x$ there exists a neighborhood $V \subset U$ of this point such that $V \cap D'$ consists of $\mu$ connected components, the boundary of each of which contains $x$;

(3) $\mu$ is the smallest integer for which the following condition holds: given $\mu + 1$ sequences $\{x_ {1, k}\}, \dots, \{x_ {\mu+1, k}\}$ of points in $D'$ converging to $x$, if $V$ is some neighborhood of $x$, then there exists a connected component of $V \cap D'$ including subsequences of two distinct sequences.

To obtain similar properties at $\infty$, we should use the stereographic projection to map the domain $D'$ onto the unit sphere in $\mathbb R^{n+1}$ with the point $\infty$ going into the north pole, on which the property of local $\mu$-connectedness at $\infty$ can be stated by analogy with the above.

Example 2.32. On the plane $\mathbb R^2$ take the complement

$$ \begin{equation*} B(0, 4) \setminus \{x=(x_1,x_2)\in B(0, 2)\mid x_1\cdot x_2=0 \} \end{equation*} \notag $$
as the domain $D'$. Fix two numbers $\alpha>-2$ and $p\in (1,2]$ with $p-2>\alpha$, as well as a continuum $F_0\subset B(0, 4)\setminus \overline{B(0, 2)}$ with nonempty interior. As the weight function $\sigma\colon B(0, 4)\to(0,\infty)$ take
$$ \begin{equation*} D'\ni x\mapsto \sigma(x)= \begin{cases} \omega(x) &\text{if }x\in B(0,2)\cap D'\text{ and }x_1\cdot x_2>0, \\ 2^{\alpha} &\text{otherwise}, \end{cases} \end{equation*} \notag $$
where $\omega$ is the weight function of example 2.7.

The domain $D'$ is obviously $4$-connected at $0$: each intersection $B(0,r)\cap D'$, for $r\in (0,2)$, consists of $4$ connected components. Denote them by $V_1$ and $V_3$ if $x_1\cdot x_2>0$ and by $V_2$ and $V_4$ otherwise.

It is natural to define the weighted capacity of the condenser $\mathcal E=(\{0\},F_0)\subset D'$ in the space $L^1_p(D';\sigma)$ with respect to the connected component $V_i$ as

$$ \begin{equation} \operatorname{cap}\bigl((\{0\}, F_0); L^1_p(V_i,D';\omega)\bigr) =\inf_{u}\|u\mid L^1_{p}(D';\omega)\|^p, \end{equation} \tag{2.32} $$
where the infimum is over all functions $u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega)$ such that $u|_{B(0,r)\cap V_i}\equiv1$ for some $r>0$, depending on $u$, and $u|_{F_0}\equiv0$.

On account of Example 2.7, the capacity of the point $0$ with respect to $V_1$ and $V_3$ is positive, and with respect to $V_2$ and $V_4$ it vanishes.

This example motivates the following definition.

Definition 2.33. Suppose that a domain $D'$ is locally $\mu$-connected at a boundary point $x\in \partial D'$ and denote by $V_1,V_2,\dots,V_\mu$ the distinct connected components of the intersection $B(x,r)\cap D'$, where $r\in(0,r_0)$ for sufficiently small $r_0>0$, whose boundaries contain $x$. Define the weighted capacity of the condenser $\mathcal E=(\{x\},F_0)\subset D'$ in the space $L^1_p(D';\omega)$ with respect to the connected component $V_i$ as

$$ \begin{equation} \operatorname{cap}\bigl((\{x\}, F_0); L^1_p(V_i,D';\omega)\bigr) =\inf_{u}\|u\mid L^1_{p}(D';\omega)\|^p, \end{equation} \tag{2.33} $$
where the infimum is over all functions $u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega)$ such that $u|_{B(x,r)\cap V_i}\equiv1$ for some $r\in (0,r_0)$, depending on $u$, and $u|_{F_0}\equiv 0$.

If $\mu=1$, then instead of notation (2.33) we will simply write

$$ \begin{equation*} \operatorname{cap}\bigl((\{x\}, F_0); L^1_p(D';\omega)\bigr). \end{equation*} \notag $$

In the case $x=\infty$, the lower bound in (2.33) is taken over all functions $u\in\operatorname{Lip}_{\mathrm{loc}}(D')\cap L^1_{p}(D';\omega)$ such that $u|_{(\mathbb R^n\setminus B(x,r))\cap V_i}\equiv1$ for some $r>0$, depending on $u$, and $u|_{F_0}\equiv0$, and denoted by

$$ \begin{equation} \operatorname{cap}\bigl((\{\infty\}, F_0); L^1_p(V_i,D';\omega)\bigr). \end{equation} \tag{2.34} $$

A boundary point $x\in \partial D'$ is called a point of zero capacity with respect to the connected component $V_i$ whenever

$$ \begin{equation} \operatorname{cap}\bigl((\{x\}, F_0); L^1_p(V_i,D';\omega)\bigr)=0. \end{equation} \tag{2.35} $$
If condition (2.35) is independent of the choice of continuum $F_0$, we simply write
$$ \begin{equation} \operatorname{cap}\bigl((\{x\}); L^1_p(V_i,D';\omega)\bigr)=0. \end{equation} \tag{2.36} $$

Proposition 2.28 yields the following corollary.

Corollary 2.34. The following claims hold.

(1) If the domain $D'$ is locally connected at $x_0$ and the condition

$$ \begin{equation} \operatorname{cap}\bigl((\{x_0\}, F_0); L^1_p(D';\omega)\bigr)=0 \end{equation} \tag{2.37} $$
holds at $x_0$, then the boundary elements $h_1$ and $h_2\in H^\omega_{\rho,p}(D')$ of the domain $D'$ whose supports $\mathcal{S}_{h_1}$ and $\mathcal{S}_{h_2}$ meet at $x_0$ cannot be distinct: $h_1=h_2$.

(2) Suppose that the domain $D'$ is locally $\mu$-connected at $x_0$, and that at $x_0$ condition (2.35)

$$ \begin{equation*} \operatorname{cap}\bigl((\{x_0\}, F_0); L^1_p(V_i,D';\omega)\bigr)=0 \end{equation*} \notag $$
holds for all $i=1,\dots,\mu$. Then the boundary elements $h_1,h_2,\dots,h_\mu,h_{\mu+1} \in H^\omega_{\rho,p}(D')$ of $D'$ whose supports $\mathcal{S}_{h_1},\mathcal{S}_{h_2},\dots,\mathcal{S}_{h_\mu},\mathcal{S}_{h_{\mu+1}}$ share the point $x_0$ cannot be distinct: at least two of them coincide.

Proof. (1) Suppose that the supports $\mathcal{S}_{h_1}$ and $\mathcal{S}_{h_2}$ of two boundary elements $h_1,h_2\in H^\omega_{\rho,p}(D')$ of $D'$ meet at $x_0$. Take two arbitrary sequences $\{x_k\}\in h_1$ and $\{y_k\}\in h_2$ fundamental with respect to the metric $\rho^{\omega}_{p,F_0}$ such that $x_k\to x_0$ and $y_k\to x_0$ as $k\to\infty$. Since $D'$ is locally connected at $x_0$, we can connect $x_k$ and $y_k$ with curves $\gamma_k = \overline{x_k y_k}$ such that $\operatorname{diam}\gamma_k \to 0$ as $k\to\infty$. Since $D'$ is locally connected at $x$, condition (2.37) also yields
$$ \begin{equation*} \operatorname{cap}\bigl((\gamma_k, F_0); L^1_p(D';\omega)\bigr)\to0\quad\text{as}\quad k\to\infty. \end{equation*} \notag $$
Hence, we see that the sequence $\{x_k\}$ and $\{y_k\}$ are equivalent, which implies $h_1\,{=}\,h_2$.

(2) Assume that the supports $\mathcal{S}_{h_1},\mathcal{S}_{h_2},\dots,\mathcal{S}_{h_{\mu+1}}$ of some boundary elements $h_1,h_2,\dots,h_{\mu+1}\,{\in}\, H^\omega_{\rho,p}(D')$, for $\mu\in \mathbb N$, of $D'$ meet at $x_0$. Take an arbitrary fundamental sequence $\{x_{ik}\}\in h_i$ with respect to the metric $\rho^{\omega}_{p,F_0}$ such that $x_{ik}\to x_0$ as $k\to\infty$, for $i=1,\dots,\mu+1$. By claim (3) of Proposition 2.31, since $D'$ is locally $\mu$-connected at $x_0$, there exists a connected component $V_{i_0}$, for $1\leqslant i_0\leqslant \mu_0$, of the intersection $B(x_0,r)\cap D'$ containing subsequences, for instance, $x_{1k_j}$ and $x_{2l_j}$, for $j\in \mathbb N$, of two distinct sequences $x_{1k}$ and $x_{2k}$, for $k\in \mathbb N$. Since the connected component $V_{i_0}$ is locally connected at $x_0$ and

$$ \begin{equation*} \operatorname{cap}\bigl((\{x_0\}, F_0); L^1_p(V_{i_0},D';\omega)\bigr)=0, \end{equation*} \notag $$
the hypotheses of claim 1 hold, which yields $h_1=h_2$. Corollary is proved.

Definition 2.35 (associated support and connected components). Consider some boundary element $h \in H^\omega_{\rho,p}(D')$ whose support $\mathcal{S}_h$ contains $x\in \partial D'$ such that the domain $D'$ is $\mu$-connected at $x$, while $\{y_{m}\}$ is a fundamental sequence with respect to the metric $\rho^{\omega}_{p,F_0}$ belonging to the boundary element $h$ and converging to $x$ in the topology of $\overline{\mathbb R^n}$. Since $D'$ is $\mu$-connected at $x$, there exists at least one connected component $V_i$ of the intersection $B(x,r)\cap D'$, where $r>0$ is a sufficiently small number, which contains some subsequence $\{y_{m_k}\}$, for $k\in\mathbb N$. In this case, say that the support $\mathcal{S}_h$ of the boundary element $h$ and the connected component $V_i$ are associated with each other at $x\in \mathcal{S}_h$.

Proposition 2.36. The following claims hold.

(1) If $D'$ is a locally $\mu$-connected domain at $x$, the support $\mathcal{S}_h$ of some boundary element $h \in H^\omega_{\rho,p}(D')$ contains $x\in \partial D'$ and is associated with the connected component $V_i$ at $x$, while the weighted capacity of $x$ with respect to the connected component $V_i$ vanishes,

$$ \begin{equation*} \operatorname{cap}\bigl((\{x\}, F_0); L^1_p(V_i,D';\omega)\bigr)=0, \end{equation*} \notag $$
then, for every sequence $\{x_m \in V_i\cap D'\}$ of points, $d(x_m,x) \to 0$ implies that $\{x_m\}\in h$ and
$$ \begin{equation} \rho_{q,f(F_0)} \bigl(f(x_m), \widetilde f(h)\bigr)\to 0\quad \textit{as}\quad m \to \infty. \end{equation} \tag{2.38} $$

(2) If $D'$ is a locally $\mu$-connected domain at $\infty$, the support $\mathcal{S}_h$ of some boundary element $h \in H^\omega_{\rho,p}(D')$ contains $\infty$ and is associated with the connected component $V_i$ at $\infty$, while the weighted capacity of the point $\infty$ with respect to some connected component $V_i$ vanishes,

$$ \begin{equation*} \operatorname{cap}\bigl((\{\infty\}, F_0); L^1_p(V_i,D';\omega)\bigr)=0, \end{equation*} \notag $$
then, for every sequence $\{ x_m \in V_i\cap D'\}$ of points, $d(x_m,0) \to \infty$ implies that $\{x_m\}\,{\in}\, h$ and (2.38) holds.

Proof. (1) Choose $x\,{\in}\, \partial D'$ and a sequence $\{x_m{\in}\, V_i\,{\cap}\, D'\}$ such that $d(x_m,x)\,{\to}\, 0$ as $m \to \infty$. Since $V_i\cap D'$ is locally connected at $x$, see claim (2) of Proposition 2.31, we infer the existence of curves $\overline{x_mx_{m+k}}$ with endpoints $x_m$ and $x_{m+k}$, for $k\geqslant1$, such that $\operatorname{diam} \overline{x_mx_{m+k}} \to 0$ as $m,k\to \infty$. Since $\operatorname{cap}((\{x\}, F_0); L^1_p(V_i,D';\omega))=0$, Definition 2.33 yields $\rho^{\omega}_{p,F_0} (x_m, x_{m+k})\to 0$ as $m,k\to \infty$. Thus, on the one hand the sequence $\{x_{m}\}$ is fundamental with respect to the metric $\rho^{\omega}_{p,F_0}$, and on the other, $d(x_m,x) \to 0$ as $m\to \infty$.

Now take an arbitrary sequence $\{y_{m}\in V_i\cap D'\}$, for $m\in\mathbb N$, fundamental with respect to the metric $\rho^{\omega}_{p,F_0}$, belonging to some boundary element $h$, and converging $x$ in the Euclidean metric. Verify that every fundamental sequence $\{x_{m}\}$ with respect to the metric $\rho^{\omega}_{p,F_0}$ satisfies

$$ \begin{equation} \rho^{\omega}_{p,F_0} (x_m, y_m)\to 0 \quad\text{as} \quad m\to \infty. \end{equation} \tag{2.39} $$
As in the previous argument, we conclude that $\rho^{\omega}_{p,F_0} (x_m, y_m)\to 0$ as $m\to \infty$. Thus, property (2.39) and property $\{x_m\}\in h$ together with it are justified.

Applying (2.9), we deduce (2.38): indeed, the sequences $\{f(x_m)\}$ and $\{f(y_m)\}$ are equivalent with respect to the capacity metric function $\rho_{q,f(F_0)}$ in the domain $D$. Hence, $\{f(x_m)\}\in \widetilde f(h)$ and $\rho_{q,f(F_0)} (f(x_m), \widetilde f(h))\to 0$ as $m \to \infty$.

(2) The second claim can be justified similarly.

Proposition is proved.

Theorem 2.37 (boundary behavior of homeomorphisms). Consider a homeomorphism $f \colon D'\to D$ of class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1<q\leqslant p\leqslant n$ for $n\geqslant 3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$, as well as a weight function $\omega\in L_{1,\mathrm{loc}}(D')$.

Suppose that the domain $D'$

(1) is locally $\mu$-connected at some boundary point $y\in\partial D'$,

(2) the support $\mathcal{S}_{h}$ of some boundary element $h\in H^\omega_{\rho,p}(D')$ contains $y$,

(3) we have $\operatorname{cap}((\{y\}, F_0); L^1_p(V_i,D';\omega))=0$, where $V_i$ is the connected component associated with the support $\mathcal{S}_{h}$ at $y$.

Then the boundary behavior of the mapping $f \colon D'\to D$ at $x\in\partial D'$ is

$$ \begin{equation*} f(z)\to \mathcal{S}_{\widetilde f(h)}\quad \textit{as}\quad z\to y,\quad z\in V_i\cap D', \end{equation*} \notag $$
in the topology of the extended space $\mathbb R^n$.

Proof. Take a sequence $\{y_m\in V_i\cap D'\}$ converging to $y\in \partial D'$ as $m\to\infty$. Proposition 2.36 shows that $\rho^{\omega}_{q,f(F_0)} (f(y_m),\widetilde f(h))\to 0$ as $m \to \infty$. In addition, by Proposition 2.27 the sequence $\{f(y_m)\}$ converges to the support $\mathcal{S}_{\widetilde f( h)}$ in the topology of the extended space $\mathbb R^n$. The proof of Theorem 2.37 is complete.

Corollary 2.38 (continuous extension to boundary points). Consider a homeomorphism $f \colon D'\to D$ of class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1< q\leqslant p\leqslant n$ for $n\geqslant3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$, as well as a weight function $\omega\in L_{1,\mathrm{loc}}(D')$.

Suppose also that

(1) the domain $D'$ is locally $\mu$-connected at some boundary point $y\in\partial D'$;

(2) the support $\mathcal{S}_{h}$ of a boundary element $h\in H^\omega_{\rho,p}(D')$ contains $y$;

(3) we have $\operatorname{cap}((\{y\}, F_0); L^1_p(V_i,D';\omega))=0$, where $V_i$ is the connected component associated with the support $\mathcal{S}_{h}$ at $y$;

(4) the support $\mathcal{S}_{\widetilde f(h)}$ of the boundary element $\widetilde f(h)$ amounts to a singleton: $\mathcal{S}_{\widetilde f(h)}=\{x\}\in \partial D$.

Then the mapping $f \colon D'\to D$ extends by continuity to $y\in\partial D'$ and

$$ \begin{equation*} \lim_{z\to y,\,z\in V_i\cap D'}f(z)=x. \end{equation*} \notag $$

Proof. Take a sequence $\{y_m\in V_i\cap D'\}$ converging to $y\in \partial D'$ as $m\to\infty$. Theorem 2.37 shows that
$$ \begin{equation*} f(z)\to \mathcal{S}_{\widetilde f(h)}\quad \text{as}\quad z\to y,\quad z\in V_i\cap D' \end{equation*} \notag $$
in the topology of the extended space $\mathbb R^n$. Since by assumption the support $\mathcal{S}_{\widetilde f( h)}$ of the boundary element $\widetilde f(h)$ is a singleton, $\mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D$, the above implies that the sequence $\{f(y_m)\}$ converges to $x\in \partial D$. The proof of Corollary 2.38 is complete.

Corollary 2.38 yields the next one.

Corollary 2.39 (continuous extension to the Euclidean boundary). Consider a homeomorphism $f \colon D'\to D$ of class $\mathcal{Q}_{p, q}(D',\omega;D)$, where $n-1< q\leqslant p\leqslant n$ for $n\geqslant3$ and $1\leqslant q\leqslant p\leqslant 2$ for $n=2$, as well as a weight function $\omega\in L_{1,\mathrm{loc}}(D')$. The following claims hold:

(1) if $D'$ is locally connected at $y\in\partial D'$ and $\operatorname{cap}((\{y\}, F_0); L^1_p(D';\omega))=0$, then $y$ lies in the support $\mathcal{S}_{h}$ of some boundary element $h\in H^\omega_{\rho,p}(D')$;

(2) if the support $\mathcal{S}_{\widetilde f(h)}$ of the boundary element $\widetilde f(h)$ is a singleton, $\mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D$, then the mapping $f\colon D'\to D$ extends by continuity to $y\in\mathcal{S}_{h}$ of the boundary element $h\in H^\omega_{\rho,p}(D')$, and

$$ \begin{equation} \lim_{z\to y,\,z\in D'} f(z)=x \quad \textit{for every point}\quad y\in \mathcal{S}_{h}. \end{equation} \tag{2.40} $$

Proof. All hypotheses of Proposition 2.36 are obviously met, and so $y$ lies in some boundary element $h\in H^\omega_{\rho,p}(D')$. The argument above and the hypotheses of the corollary ensure the fulfillment of the conditions of Corollary 2.38 for $\mu=1$. It shows that the mapping $f \colon D'\to D$ extends by continuity to $y\in\mathcal{S}_{h}$, and the limit equals (2.40). Corollary is proved.

Example 2.40 (domain with nontrivial boundary elements). Consider $D=(0,1)^2\setminus\bigcup_{k\in\mathbb{N}}I_k\subset \mathbb{R}^2$, where $I_k=[1/2,1) \times \{1/2^k\}$ determine the cuts. It is not difficult to see that $I=[1/2,1)\times\{0\}$ is the support of a boundary element for $p=2$ and $\omega\equiv1$.

Example 2.41. For the domain from Example 2.18, the edge of the ridge

$$ \begin{equation*} E = \{x=(x_1,x_2,x_3) \colon x_1 = x_2 = 0, \, 0 \leqslant x_3 \leqslant \infty\} \end{equation*} \notag $$
is indeed the support of a boundary element.

Remark 2.42. For the weight $\omega$ and the domain $D'$ such that the collection $H^\omega_{\rho,p}(D')$ of boundary elements is independent of the choice of the continuum $F_0$, the support $\mathcal{S}_h$ of an arbitrary boundary element $h\in H^\omega_{\rho,p}(D')$ is independent of the choice of $F_0$, and consequently, all statements of this section are absolute.

§ 3. Moduli of curve families and homeomorphisms of class $\mathcal Q_{p,q}(D',\omega)$

Consider a domain $D'$ in $\mathbb{R}^{n}$, where $n \geqslant 2$, a weight function $\omega\colon D' \to (0, \infty)$ of class $L_{1,\mathrm{loc}}$, and a family $\Gamma$ of (continuous) curves or paths $\gamma\colon[a,b]\to D'$.

Recall that, given a curve family $\Gamma$ in $D'$ and a real number $p\geqslant 1$, the weighted $p$-modulus of $\Gamma$ is defined as

$$ \begin{equation*} \operatorname{mod}^{\omega}_{p}(\Gamma)=\inf_\rho \int_{D'} \rho^{p}(x)\omega(x)\, dx, \end{equation*} \notag $$
where the infimum is over all nonnegative Borel functions $\rho\colon D' \to [0, \infty]$ with
$$ \begin{equation} \int_{\gamma} \rho\, ds \geqslant 1 \end{equation} \tag{3.1} $$
for all (locally) rectifiable curves $\gamma \in \Gamma$. In the case of trivial weight $\omega \equiv 1$ we write $\operatorname{mod}_{p}(\Gamma)$ instead of $\operatorname{mod}^1_{p}(\Gamma)$. Recall that the integral in (3.1) for a rectifiable curve $\gamma\colon[a,b]\to D'$ is defined as
$$ \begin{equation*} \int_{\gamma} \rho\, ds = \int_{0}^{l(\gamma)} \rho(\widetilde{\gamma}(t))\, dt, \end{equation*} \notag $$
where $l(\gamma)$ is the length of $\gamma\colon[a,b]\to D'$, while $\widetilde{\gamma}\colon[0,l(\gamma)]\to D'$ is its natural parametrization, that is, the unique continuous mapping with $\gamma=\widetilde{\gamma}\circ S_{\gamma}$, where $S_{\gamma}\colon[a,b]\to[0,l(\gamma)]$ is the length function, defined at $t\in [a,b]$ as $S_{\gamma}(t)=l(\gamma\vert_{[a,t]})$. If $\gamma$ is only a locally rectifiable curve, then we put
$$ \begin{equation*} \int_{\gamma} \rho\,ds = \sup \int_{\gamma'} \rho\,ds \end{equation*} \notag $$
with the least upper bound taken over all rectifiable subcurves $\gamma'\colon [a', b'] \to D'$ of $\gamma$, where $[a', b']\subset(a,b)$ and $\gamma'= \gamma_{[a', b']}$.

The functions $\rho$ satisfying (3.1) are called admissible functions, or metrics, for the family $\Gamma$.

An equivalent description of the mappings of classes $\mathcal Q_{p,q}(D',\omega;D)$ is obtained in [33] in the modular language: to this end, we should replace capacity in the definition of $\mathcal Q_{p,q}(D',\omega;D)$ by the modulus of the curve family whose endpoints lie on the plates of the condenser.

Remark 3.1. It is observed in [32; Section 4.4] that in the case $q=p=n$ ($n-1<q=p<n$) the class of homeomorphisms $\mathcal Q_{n,n}(D',\omega;D)$ ($\mathcal Q_{p,p}(D',\omega;D)$) is included into the class of $\omega$-homeomorphisms ($(p, \omega)$-homeomorphisms)4 [21] ([59]), defined via a controlled variation of the modulus of the curve family.

We will verify that, actually, the class $\mathcal Q_{n,n}(D',\omega;D)$ coincides with the family of $\omega$-homeomorphisms of [21; § 4.1]. Consider two domains $D'$ and $D$ in $\mathbb{R}^{n}$, where $n \geqslant 2$, and a function $\omega\colon D' \to [1, \infty)$ of class $L_{1,\mathrm{loc}}$. Recall that a homeomorphism $f\colon D' \to D$ is called an $\omega$-homeomorphism whenever

$$ \begin{equation} \operatorname{mod}_n(f \Gamma) \leqslant \int_{D'} \omega(x) \cdot \rho^{n}(x)\,dx \end{equation} \tag{3.2} $$
for each family $\Gamma$ of paths in $D'$ and every admissible function $\rho$ for $\Gamma$. By [33; Theorem 19], the homeomorphisms satisfying (3.2) coincide with the homeomorphisms $f\colon D'\to D$ of class $\mathcal Q_{n,n}(D',\omega; D)$.

Some properties of the homeomorphisms of class $\mathcal Q_{p,q}(D',\omega)$ were studied in [27] (for $n-1<q<p=n$, the value $\Psi_{q,n}(U)$ instead of $\Psi_{q,n}(U\setminus F)$, and $\omega\equiv1$), [21], [60]–[64] (all for $q=p=n$ and $\omega=Q$), [65], [66] (for $1<q=p<n$ and $\omega=Q$), and many others. In all articles mentioned except [27] the distortion of the geometry of condensers is stated in the language of moduli of curve families, which in a series of cases is a more restrictive characteristic than capacity as far as meaningful applications are concerned.

§ 4. Geometry the boundary

In this section, we consider geometric concepts and the main results of other approaches to the boundary behavior problem.

Definition 4.1. The boundary $\partial D'$ of a domain $D'$ is called $(p,\omega)$-weakly flat at $x_0 \in \partial D'$, where $p > 1$, if for every neighborhood $U$ of $x_0$ and every number $\lambda > 0$, there is a neighborhood $V \subset U$ of $x_{0}$ such that for all continua5 $F_0$ and $F_1$ in $D'$, intersecting $\partial U$ and $\partial V$, the capacity of the condenser $\mathcal E=(F_1,F_0)$ satisfies $\operatorname{cap} (\mathcal E; L_p(D',\omega)) \geqslant \lambda$. The boundary $\partial D'$ is called $(p,\omega)$-weakly flat whenever it is $(p,\omega)$-weakly flat at each of its points.

A point $x_0 \in \partial D'$ is called $(p,\omega)$-strongly accessible, where $p > 1$, if for every neighborhood $U$ of $x_0$, there exist a neighborhood $V \subset U$ of this point, a compact set $F_0 \subset D'$, and a number $\delta > 0$, such that for all continua $F_1$ in $D'$ intersecting $\partial U$ and $\partial V$ the capacity of the condenser $\mathcal E=(F_1,F_0)$ is bounded from below: $\operatorname{cap} (\mathcal E; L_p(D',\omega)) \geqslant \delta$. The boundary $\partial D'$ is called $(p,\omega)$-strongly accessible whenever each of its points is $(p,\omega)$-strongly accessible.

In the unweighted case for $p = n$ the properties of the boundary to be weakly flat and strongly accessible are introduced in [21; § 3.8] in terms of moduli of curve families. These conditions generalize properties $P1$ and $P2$ of [18; § 17] and the properties of the boundary to be quasiconformally flat and quasiconformally accessible [16]. The case of arbitrary $p >n-1$ is considered, for instance, in [67].

Proposition 4.2. Suppose that $1\leqslant p <\infty$. If a domain $D'\subset \mathbb{R}^n$, where $n\geqslant 2$, has $(p,\omega)$-weakly flat boundary and $\omega\in L_{1,\mathrm{loc}}(D')$ then

(1) the boundary $\partial D'$ is $(p,\omega)$-strongly accessible;

(2) $D'$ is locally connected at the boundary points.

Proof. The proof follows the scheme of the proof of Proposition 3.1 and Lemma 3.15 of [21] with obvious adjustments.

Remark 4.3. Since in the unweighted case the modulus and capacity coincide [68]–[70], the properties of the boundary to be weakly flat and strongly accessible of [21] precisely coincide with the case of trivial weight and $p = n$ in Definition 4.1 of $(n,1)$-weakly flat and $(n,1)$-strongly accessible boundary.

Moreover, a point $x_0\in \partial D'$ is $(n,1)$-strongly accessible whenever it is quasiconformally accessible [16; Definition 1.7]: given a neighborhood $U$ of $x_0$, there are a continuum $F_0 \subset D'$ and a number $\delta > 0$ such that $\operatorname{cap} ((F_1,F_0); L^1_p(D',\omega)) \geqslant \delta$ for all connected sets $F_1$ in $D'$ satisfying $x_0\in\overline F_1$ and $F_1 \cap \partial U \neq \varnothing$.

Note the following connection between the singleton support of a boundary element and the above conditions on the geometry of the boundary.

Proposition 4.4. Given a weight $\omega$ and a domain $D'$ satisfying Remark 2.42, take a boundary element $h\in H^\omega_{\rho,p}(D')$ and a point $x_0\in S_h$ which is $(p,\omega)$-strongly accessible in the sense of Definition 4.1. Then $\mathcal{S}_h = \{x_0\}$.

Proof. Assume on the contrary that $x_0$ is $(p,\omega)$-strongly accessible and there exists a point $y_0 \in \mathcal{S}_h$ with $d(x_0,y_0)\geqslant \alpha>0$. By the definition of the support of a boundary element, there exist fundamental sequences $\{x_m \,{\in}\, D'_{\rho,p}\}$ and $\{y_m \,{\in}\, D'_{\rho,p}\}$ with respect to the metric $\rho^{\omega}_{p,F_0}$ such that $x_m \to x_0$ and $y_m\to y_0$ in the topology of the extended Euclidean space. Fix a neighborhood $V \subset U = B(x_0,\alpha/3)$ of $x_0$, a compact set $F_0 \subset D'$, and a number $\delta > 0$ according to Definition 4.1. Find a number $m_0$ such that $x_m \in V$ and $y_m \in B(y_0,\alpha/3)$ for all $m\geqslant m_0$. It is obvious that for $m\geqslant m_0$ every curve $\overline{x_m y_m}$ crosses $\partial V$ and $\partial U$, and so, since the image of the curve is a continuum, the definition of strong accessibility yields $\operatorname{cap}((\overline{x_m y_m},F_0); L_p(D',\omega)) \geqslant \delta$.

By the definition of the capacity metric (2.7), among the mentioned continua with endpoints $x_m \in V$ and $y_m \in B(y_0,\alpha/3)$ there is $\gamma_m = \overline{x_m y_m}$ such that

$$ \begin{equation} \rho^{\omega}_{p,F_0}(x_m, y_m) \geqslant \operatorname{cap}\bigl((\gamma_m,F_0); L_p(D',\omega)\bigr) - \frac{\delta}{2^m} \geqslant \delta\biggl(1-\frac{1}{2^m}\biggr). \end{equation} \tag{4.1} $$
On the other hand, $x_0$, $y_0 \in \mathcal{S}_h$ implies that the sequences $\{x_m \in D'_{\rho,p}\}$ and $\{y_m \in D'_{\rho,p}\}$ are equivalent. Therefore, $\rho^{\omega}_{p,F_0}(x_m, y_m) \to 0$, which contradicts (4.1). Proposition is proved.

Corollary 4.5 of Theorem 2.19 ([25]; [26; Ch. 5, Theorem 1.3]; [17; Theorem 10.4]). Consider two domains $D$ and $D'$ in $\mathbb{R}^n$, where $n \geqslant 2$. Every quasiconformal mapping $f\colon D' \to D$ admits a homeomorphic extension to the capacity boundary

$$ \begin{equation*} \widetilde f\mid_{H_{\rho,n}(D')}\colon \bigl(H_{\rho,n}(D'), \widetilde\rho_{n,F_0}\bigr)\to \bigl(H_{\rho,n}(D), \widetilde\rho_{n,f(F_0)}\bigr). \end{equation*} \notag $$

Proof. By Definition 1.4, the quasiconformal mapping belongs to the class $\mathcal{Q}_{n,n}(D',1;D)$. The claim follows directly from Theorem 2.22.

Corollary 4.6 of Theorem 2.38. Consider two domains $D$ and $D'$ in $\mathbb{R}^n$, where $n \geqslant 2$, and a homeomorphism $f\colon D' \to D$ satisfying one of the following conditions:

(1) $f$ is quasiconformal, $D'$ is locally connected on the boundary, and $\partial D$ is quasiconformally accessible [16; Theorem 2.4].

(2) $f\in\mathcal Q_{n,n}(D',\omega;D)$, in particular, $f$ is an $\omega$-homeomorphism in the sense of Remark 3.1, for6 $\omega\in \mathrm{BMO}(\overline{D'})$, $D'$ is locally connected on the boundary, and $\partial D$ is $(n,1)$-strongly accessible [21; Lemma 5.3].

Then $f$ admits a continuous extension $\overline f \colon \overline{D'} \to \overline{D}$ to the boundary.

Proof. Verify that the hypotheses of Corollary 2.39 hold in both cases, and so $f\colon D' \to D$ extends by continuity to the closure $\overline{D'}$.

In case (1) for every point $x\in \overline{D'}$ we have $\operatorname{cap}((\{x\}, F_0); L^1_n(D'))=0$. Since every quasiconformal mapping is of class $\mathcal{Q}_{n,n}(D',1;D)$, it remains to verify that if $x\in\mathcal{S}_{h}$ and $h\in H_{\rho,n}(D')$, then the support $\mathcal{S}_{\widetilde f(h)}$ of the boundary element $\widetilde f(h)$ is a singleton, where $\widetilde f$ is the extension of $f$ of Theorem 2.19. The latter follows from the quasiconformal accessibility of $\partial D$, Proposition 4.4, and Remark 4.3. The possibility of extending the mapping $f$ by continuity to $\partial D'$ follows from Corollary 2.39.

In case (2) observe first of all that Example 2.9 yields $\operatorname{cap}((\{x\}, F_0); L^1_p(D';\omega))\,{=}\,0$ for every boundary point $x\in \partial D'$, and this property is local. Hence, it is independent of the continuum $F_0$. Moreover, by Remark 3.1, the $\omega$-homeomorphism $f$ belongs to $\mathcal{Q}_{n,n}(D',\omega;D)$. As above, Proposition 4.4 shows that the support $\mathcal{S}_{\widetilde f(h)}$ of the boundary element $\widetilde f(h)$ is a singleton, and Corollary 2.39 guarantees the required result.

Corollary is proved.

Remark 4.7. In the planar case, $n=2$, the capacity boundary $H_{\rho,2}$ with respect to the Sobolev class $L^1_2$ is homeomorphic to the boundary of prime ends, see [71], for instance. In the space $\mathbb{R}^n$, where $n\geqslant 3$, it is known that for the domains quasiconformally equivalent to a domain with locally quasiconformal boundary, called regular domains, the completion in the prime ends topology is equivalent to the completion in the modular [17] and capacity [26] metrics.

Example 4.8. Take the domain $D' = [0,1]^3 \subset \mathbb{R}^3$, the weight $\omega(y) = y_1^{\beta}$ with $\beta>-3$, and the ridge domain from Example 2.18:

$$ \begin{equation*} D = \{x=(x_1,x_2,x_3) \colon |x_2| < x_1^{\alpha},\, 0<x_1, x_3<1\}\subset \mathbb{R}^3, \qquad \alpha>2. \end{equation*} \notag $$
Consider the mapping $f$ whose inverse $\varphi(x)=f^{-1}(x)$ is defined as
$$ \begin{equation*} \varphi(x)= \begin{pmatrix} x_1 \\ x_2 x_1^{\alpha}\\ x_3 \end{pmatrix} \colon D \to D'. \end{equation*} \notag $$
It is not difficult to verify that
$$ \begin{equation*} \begin{gathered} \, |D\varphi(x)| \approx \max \{1, \alpha x_2x_1^{\alpha-1}, x_1^{\alpha}\} \approx 1 \quad \text{and} \quad \det J(x,f) = x_1^{\alpha}, \\ K^{1,\omega}_{3,3}(x,\varphi) \approx x_1^{-(\beta+\alpha)/3}\in L_{\infty}(D) \quad\text{for} \quad \beta+\alpha\leqslant 0. \end{gathered} \end{equation*} \notag $$
Then Theorem 1.6 shows that $f$ is of class $\mathcal{Q}_{3,3}(D',\omega;D)$ and Theorem 2.19 can be applied to it: there exists a continuous extension $f\colon (\widetilde{D}'_{\rho,3},\widetilde\rho^{\,\omega}_{3,F_0}) \to(\widetilde{D}_{\rho,3},\widetilde\rho_{3,f(F_0)})$.

As far as the authors are aware, this example cannot be handled in the framework of other articles concerning boundary correspondence. For instance, [13], [22] require that the boundary of the domain $D$ be $(n,1)$-strongly accessible. In the case of $D$ under consideration, the ridge is neither $(n,1)$-weakly flat nor $(n,1)$-strongly accessible for $\alpha>2$. Indeed, [16; Example 5.5] shows that the points on the ridge are quasiconformally accessible if and only if $1<\alpha<2$ and are not quasiconformally flat for any $\alpha>1$. In addition, it is not difficult to verify that necessary conditions for the ridge to be quasiconformally flat and quasiconformally accessible are also necessary for the ridge to be $(n,1)$-weakly flat and $(n,1)$-strongly accessible, see [16; Theorems 5.3, 5.4].

§ 5. Applications

In this section, we apply the results on boundary behavior to the homeomorphisms of certain classes $\mathcal Q_{p,q}(D',\omega;D)$ considered in the examples of this article.

5.1. The homeomorphism of Example 1.13

The following mapping is considered in [31].

For $n-1< s<\infty$, take a homeomorphism $f \colon D' \to D$ of open domains $D'$, $D\subset \mathbb{R}^n$, where $n\geqslant 2$, such that

(1) $f\in W^1_{n-1, \mathrm{loc}}(D')$;

(2) the mapping $f$ has finite distortion;

(3) the outer distortion function

$$ \begin{equation} D'\ni y \mapsto K^{1,1}_{n-1,s}(y,f) = \begin{cases} \dfrac{|Df(y)|}{|{\det Df (y)}|^{1/s}} &\text{if }\det Df (y)\neq 0, \\ 0 &\text{if }\det Df (y) = 0 \end{cases} \end{equation} \tag{5.1} $$
belongs to $L_{\sigma}(D)$, where $\sigma=(n-1)p$ and $p=s/(s-(n-1))$.

Then by [28; Theorem 4] the inverse homeomorphism $\varphi=f^{-1}\colon D\to D'$ has the following properties:

(4) $\varphi\in W^1_{p, \mathrm{loc}}(D)$, $p=s/(s-(n-1))$;

(5) $\varphi$ has finite distortion.

The original homeomorphism $f\colon D'\to D$ has the following properties:

(6) it is of class $\mathcal Q_{p,p}(D',\omega;D)$ with the constant $K_p=1$ [31; Corollary 26] and the weight function $\omega\in L_{1,\mathrm{loc}}(D')$ defined as

$$ \begin{equation} \omega(y)= \begin{cases} \dfrac{|{\operatorname{adj} Df(y)}|^{p}}{|{\det Df (y)}|^{p-1}} &\text{if }y\in D'\setminus Z', \\ 1 &\text{otherwise}, \end{cases} \end{equation} \tag{5.2} $$
see [31; formula (37)], where $Z'=\{y\in D'\colon Df(y)=0\}$;

(7) if $p>n-1$ (which corresponds to $s<n+1/(n-2)$), then the composition operator

$$ \begin{equation*} f^*\colon L^1_{p'}(D)\cap \operatorname{Lip}_{\mathrm{loc}}(D)\to L^1_{p'}(D';\theta) \end{equation*} \notag $$
is bounded, where $p'=p/(p-(n-1))$ and $\theta(y)=\omega^{-(n-1)/(p-(n-1))}(y)$.

Proposition 5.1. The results of this article concerning the boundary behavior of homeomorphisms, namely, Theorems 2.19 and 2.37, Corollaries 2.38 and 2.39, are applicable to the mapping $f$ of Subsection 5.1.

Explicitly, for $n\leqslant s < n+1/(n-2)$ the homeomorphism $f$ introduced above has the following properties:

(1) the mapping $f$ induces a Lipschitz mapping $f\colon ({D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) \to({D}_{\rho,p},\widetilde\rho_{p,f(F_0)})$ of metric spaces: $\widetilde\rho_{p,f(F_0)}(f(x),f(y))\leqslant \widetilde\rho^{\,\omega}_{p,F_0}(x,y)$ for all points $x,y\in {D}'_{\rho,p}$;

(2) the mapping $f$ induces a Lipschitz mapping $\widetilde f\colon ({\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0}) \to({\widetilde D}_{\rho,p},\widetilde\rho_{p,f(F_0)})$ of “completed” metric spaces:

to $X\in( {\widetilde D}'_{\rho,p},\widetilde\rho^{\,\omega}_{p,F_0})$ associate $\widetilde f(X)\in ({\widetilde D}_{\rho,q},\widetilde\rho_{q,f(F_0)})$, which contains the fundamental sequence $\{f(x_l)\}$, where $\{x_l\}\in X$:

$$ \begin{equation*} \widetilde\rho_{p,f(F_0)}\bigl(\widetilde f(X),\widetilde f(Y)\bigr)\leqslant \widetilde\rho^{\,\omega}_{p,F_0}(X,Y) \end{equation*} \notag $$
for $X,Y\in {\widetilde D}'_{\rho,p}$;

(3) the restriction $\widetilde f\mid_{H^\omega_{\rho,p}(D')}\colon (H^\omega_{\rho,p}(D'), \widetilde\rho^{\,\omega}_{p,F_0})\to (H_{\rho,p}(D), \widetilde\rho_{p,f(F_0)})$ is a Lipschitz mapping of capacity boundaries;

(4) if the domain $D'$ is locally $\mu$-connected at a boundary point $y\in\partial D'$, the support $\mathcal{S}_{h}$ of the boundary element $h\in H^\omega_{\rho,p}(D')$ contains $y$, and

$$ \begin{equation*} \operatorname{cap}\bigl((\{y\}, F_0); L^1_p(V_i,D';\omega)\bigr)=0, \end{equation*} \notag $$
where $V_i$ is the connected component associated with $\mathcal{S}_{h}$ at $y$, then $f(z)\to \mathcal{S}_{\widetilde f(h)}$ as $z\to y$ with $z\in V_i\cap D'$ in the topology of the extended space $\mathbb R^n$;

(5) if the domain $D'$ is locally $\mu$-connected at a boundary point $y\in\partial D'$, the support $\mathcal{S}_{h}$ of the boundary element $h\in H^\omega_{\rho,p}(D')$ contains $y$ and

$$ \begin{equation*} \operatorname{cap}\bigl((\{y\}, F_0); L^1_p(V_i,D';\omega)\bigr)=0, \end{equation*} \notag $$
where $V_i$ is the connected component associated with $\mathcal{S}_{h}$ at $y$ and $\mathcal{S}_{\widetilde f(h)}=\{x\}\in \partial D$, then the mapping $f \colon D'\to D$ extends by continuity to $y\in\partial D'$ and
$$ \begin{equation*} \lim_{z\to y,\,z\in V_i\cap D'}f(z)=x; \end{equation*} \notag $$

(6) if the domain $D'$ is locally connected at $y\in\partial D'$ and

$$ \begin{equation*} \operatorname{cap}\bigl((\{y\}, F_0); L^1_p(D';\omega)\bigr)=0, \end{equation*} \notag $$
then $y$ lies in the support $\mathcal{S}_{h}$ of some boundary element $h\in H^\omega_{\rho,p}(D')$;

(7) if $\mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D$, then the mapping $f \colon D'\to D$ extends by continuity to $y\in\mathcal{S}_{h}$ of the boundary element $h\in H^\omega_{\rho,p}(D')$ and

$$ \begin{equation*} \lim_{z\to y,\,z\in D'} f(z)=x \quad \textit{for every points}\quad y\in \mathcal{S}_{h}. \end{equation*} \notag $$

Let us compare the above example with the mapping of [72], which considers a $W^{1}_{1, \mathrm{loc}}$-homeomorphism $f\colon D' \to D$ with finite distortion, whose outer distortion function

$$ \begin{equation} K^{1,1}_{n,n}(y,f) = \begin{cases} \dfrac{|Df(y)|}{|{\det Df (y)}|^{1/n}} &\text{if }\det Df (y)\neq 0, \\ 0 &\text{if } \det Df (y)=0 \end{cases} \end{equation} \tag{5.3} $$
belongs to $L_{(n-1)n, \mathrm{loc}}(D')$.

Verify that this mapping is a particular case for $s=n$ of the scale mapping considered above: $f\in W^1_{n-1, \mathrm{loc}}(D')$ with the distortion function (5.1). To this end, we have to show that the $W^{1}_{1, \mathrm{loc}}$-homeomorphism $f\colon D' \to D$ is of class $f\in W^1_{n-1, \mathrm{loc}}(D')$. To verify the last property, observe that $f$ induces the composition operator

$$ \begin{equation*} f^*\colon L^1_{n}(D)\cap \operatorname{Lip}_{\mathrm{loc}}(D) \to L^1_{n-1, \mathrm{loc}}(D') \end{equation*} \notag $$
in the sense that $u\circ f \in L^1_{n-1, \mathrm{loc}}(D')$ for every function $u\in L^1_{n}(D)\cap \operatorname{Lip}_{\mathrm{loc}}(D)$.

Indeed, consider a compactly embedded domain $U\Subset D'$. Take $u\in {L}^1_n(f(U)) \cap \operatorname{Lip}_{\mathrm{loc}}(f(U))$. The composition $u\circ f$ clearly lies in $\mathrm{ACL}(U)$. Let us show that the derivatives of the composition are integrable. We can find the derivative of the composition as

$$ \begin{equation*} \frac{\partial (u\circ f)}{\partial y_i}(y)= \sum_{j=1}^n\frac{\partial u}{\partial x_j}(f(y))\, \frac{\partial f_j}{\partial y_i}(y) \end{equation*} \notag $$
provided that $f(y)$ is a point of differentiability of $u$ and $\partial (u\circ f)(y)/\partial y_i=0$ otherwise because in this case $y\in Z'$ and $Df(y)=0$ a. e. Since the distortion function (5.3) is of class $L_{(n-1)n}(U)$, we have
$$ \begin{equation} \int_{U} |\nabla(u\circ f)(y)|^{n-1}\,dy \nonumber \end{equation} \notag $$
$$ \begin{equation} \qquad\leqslant \int_{U\setminus (Z'\cup \Sigma')}|\nabla u(f(y))|^{n-1}\det Df(y)^{(n-1)/n} \cdot\frac{|Df(y)|^{n-1}}{\det Df(y)^{(n-1)/n}} \,dy \end{equation} \tag{5.4} $$
$$ \begin{equation} \qquad\leqslant \biggl(\int_{U\setminus (Z'\cup \Sigma')}|\nabla u(f(y))|^n\det Df(y)\,dy\biggr)^{(n-1)/n} \nonumber \end{equation} \notag $$
$$ \begin{equation} \qquad\qquad \times \biggl(\int_{U\setminus (Z'\cup\Sigma')} \biggl(\frac{|Df(y)|}{|{\det Df(y)}|^{1/n}}\biggr)^{(n-1)n} \,dy\biggr)^{1/n} \end{equation} \tag{5.5} $$
$$ \begin{equation} \qquad=\|K^{1,1}_{n,n}(\,{\cdot}\,,f)\mid L_{(n-1)n}(U)\|^{n-1} \biggl(\int_{f(U)}|\nabla u(x)|^n\,dx\biggr)^{(n-1)/n}. \nonumber \end{equation} \notag $$
To go from (5.4) to (5.5), we use Hölder’s inequality with the summability exponents $n/(n-1)$ and $n$.

Furthermore, observe that $f(U)$ is a bounded open set, so that the coordinate function $u_j(x)\mapsto x_j$ lies in $L^1_n(f(U))$. By (5.4), (5.5) the composition $(u_j\circ f)(y)=f_j(y)$ for $y\in D'$ is of class $f_j\in L^1_{n-1, \mathrm{loc}}(D')$, for $j=1,\dots,n$, while the mapping $f\colon D'\to D$ is of class $W^1_{n-1, \mathrm{loc}}(D')$.

Therefore, the mapping of [72] satisfies all hypotheses of Example 1.13 with $s=n$, and thus, the claim of Proposition 5.1 holds for it.

5.2. The homeomorphism of Example 1.16

Consider the mapping of Example 1.16 in the case that it is a homeomorphism. Then we have some homeomorphism $f\colon D'\to D$ of class $\mathcal{OD}(D';s,r;\theta,1)$, where $n-1< s\leqslant r<\infty$, with outer bounded $\theta$-weighted $(s,r)$-distortion, meaning that

(1) $f \in W^1_{n-1,\mathrm{loc}}(D')$;

(2) $f$ has finite distortion;

(3) the distortion function

$$ \begin{equation*} D' \ni x\mapsto K_{s,r}^{\theta,1}(x,f)= \begin{cases} \dfrac{\theta^{1/s}(x)|D f(x)|}{|{\det Df(x)}|^{1/r}} &\text{if } \det Df(x)\ne0, \\ 0 &\text{otherwise} \end{cases} \end{equation*} \notag $$
is of class $L_{\rho}(D')$, where $\rho$ is found from the condition $1/\rho = 1/s-1/r$ and $\rho = \infty$ for $s=r$.

Proposition 5.2. On assuming that $\omega(x)=\theta^{-(n-1)/(s-(n-1))}(x)$ is locally integrable, the homeomorphism $f\colon D'\to D$ of class $\mathcal{OD}(D';s,r;\theta,1)$, where $n\leqslant s \leqslant r < n+ 1/(n+2)$, belongs to the family $\mathcal Q_{p,q}(D',\omega;D)$, where $q=r/(r-(n-1))$ and $p=s/(s-(n-1))$ with $n-1<q\leqslant p\leqslant n$. Furthermore, the factors in the right-hand side of (1.8) are equal to $K_p=\|K_{r,r}^{\theta,1}(\,{\cdot}\,,f)\mid L_{\infty}(D')\|^{n-1}$ for $q=p$ and

$$ \begin{equation*} \Psi_{p,q}\bigl(Q(x,R)\setminus \overline{Q(x,r)}\bigr)^{1/\sigma}= \bigl\|K_{s,r}^{\theta,1}(\,{\cdot}\,,f)\bigm| L_{\rho}(Q(x,R)\setminus \overline{Q(x,r)})\bigr\|^{n-1}\quad \textit{for} \quad q<p, \end{equation*} \notag $$
where $1/\sigma=1/q-1/p=(n-1)/\varrho$.

Therefore, Theorems 2.22 and 2.37 concerning boundary behavior and their Corollaries 2.38 and 2.39 apply to the mapping $f\colon D'\to D$. In particular, applying Corollary 2.39, we obtain the following proposition.

Proposition 5.3. Under the hypotheses of Proposition 5.2, assume that

(1) the domain $D'$ is locally connected at every point $y\in\partial D'$ and

$$ \begin{equation*} \operatorname{cap}\bigl((\{y\}, F_0); L^1_p(D';\omega)\bigr)=0, \end{equation*} \notag $$

(2) the support $\mathcal{S}_{\widetilde f(h)}$ of the boundary element $\widetilde f(h)$ is a singleton: $\mathcal{S}_{\widetilde f( h)}=\{x\}\in \partial D$, where $h\in H^\omega_{\rho,p}(D')$ is the boundary element containing $\{y\}$.

Then we obtain an extension by continuity of the homeomorphism $f \colon D'\to D$ at the point $y$ of the support $\mathcal{S}_{h}$ of the boundary element $h\in H^\omega_{\rho,p}(D')$ such that

$$ \begin{equation*} \lim_{z\to y,\,z\in D'} f(z)=x \quad \textit{for every point}\quad y\in \mathcal{S}_{h}. \end{equation*} \notag $$

A similar result is obtained in [67; Theorem 2] under stronger restrictions: $f\in W^1_{s,\mathrm{loc}}(D')$, and so $n-1< s$, condition (1) holds, but instead of condition (2) it is assumed that the points $x\in\partial D$ are $q$-strongly accessible for $q=r /(r- (n- 1))$. Recall that under this condition the support $\mathcal{S}_{h}$ of $x\in h$ is a singleton, see Proposition 4.4. Therefore, the fulfillment of the hypotheses of Theorem [67; Theorem 2] ensures that conditions (1) and (2) above hold. Then, there exists a continuous extension of the mapping $f \colon D'\to D$ to the Euclidean boundary.

Proposition 5.4. Assume the hypotheses of Proposition 5.2. If the domain $D'$ is locally connected at the boundary, while the boundary $\partial D$ is $q$-weakly flat for $q=r /(r-(n-1))$, then the mapping $f^{-1}$ admits a continuous extension $\widetilde{f}^{-1}\colon\overline{D} \to \overline{\mathbb{R}^{n}}$.

Proof. Assume on the contrary that the mapping $f^{-1}$ has no limit at some point $x_{0} \in \partial D$. Then there exist two distinct points $y_1,y_2\in \partial D'$ and two sequences $\{x_{1,k} \in D\}$, $\{x_{2,k} \in D\}$ such that
$$ \begin{equation*} \lim_{x_{1,k}\to x_0} f^{-1}(x_{1,k}) = y_1 \neq y_2 = \lim_{x_{2,k}\to x_0} f^{-1}(x_{2,k}). \end{equation*} \notag $$
Choose two balls $B_i=B(y_i, r_i)$, for $i=1,2$, satisfying $\overline{B}_1 \cap \overline{B}_2=\varnothing$. Since the domain $D'$ is locally connected at the boundary, for the ball $B_i$ there is a connected component of $B_i \cap D'$ which includes $U_i=B(y_i, \widetilde{r}_i) \cap D'$ for some $\widetilde{r}_i \in(0, r_i)$, for $i=1,2$.

Take a positive number $h<\operatorname{dist}(B_1, B_2)$. By the subordination principle, Property 1.2, the piecewise linear function $u$ defined as

$$ \begin{equation*} u(y)= \begin{cases} 1 &\text{for } y \in B(y_1, r_1) \cap D', \\ 0 & \text{for } y \in \mathbb{R}^{n} \setminus(B(y_1, r_1+h) \cap D') \end{cases} \end{equation*} \notag $$
is admissible for the condenser $E'=(F_1',F_2')$ for every continuum $F_i'\Subset B_i \cap D'$. Take a number $P$ such that $P > C \|u \mid L^1_p (D', \omega)\|$, where $C$ is the constant in (1.9).

By construction, $x_{0} \in \overline{f(U_1)} \cap \overline{f(U_2)}$. Suppose that $V$ is a neighborhood of $x_{0}$ so small that

$$ \begin{equation*} f(U_i) \setminus V \neq \varnothing, \qquad i=1,2. \end{equation*} \notag $$
Since $\partial D$ is $q$-weakly flat, for some neighborhood $W \subset V$ of $x_{0}$ and some continuum $F_i {\subset}\, f(U_i)$, for $i\,{=}\,1,2$, intersecting $\partial V$ and $\partial W$, we have $\operatorname{cap}^{1/q} ((F_1, F_2); L_q(D))\,{\geqslant}\, P$. Choose $F_i'$ so that $F_i'=f(F_i)$. Then the relations
$$ \begin{equation*} \begin{aligned} \, P &\leqslant \operatorname{cap}^{1/q}\bigl((F_1,F_2); L^1_q(D)\bigr) = \operatorname{cap}^{1/q}\bigl(f^{-1}(E'); L^1_q(D)\bigr) \\ &\leqslant C \operatorname{cap}^{1/p} (E'; L^1_p(D',\omega)) < P \end{aligned} \end{equation*} \notag $$
lead to a contradiction. Proposition is proved.

Some results similar to Propositions 5.25.4 were obtained in [67; Theorem 1] under stronger restrictions: $f\in W^1_{s,\mathrm{loc}}(D')$ and $s>n-1$.

Список литературы

1. C. Carathéodory, “Über die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370  crossref  mathscinet  zmath
2. W. F. Osgood, E. H. Taylor, “Conformal transformations on the boundaries of their regions of definition”, Trans. Amer. Math. Soc., 14:2 (1913), 277–298  crossref  mathscinet  zmath
3. Г. Д. Суворов, “Простые концы последовательности плоских областей, сходящейся к ядру”, Матем. сб., 33(75):1 (1953), 73–100  mathnet  mathscinet  zmath; англ. пер.: G. D. Suvorov, “On the prime ends of a sequence of plane regions converging to a nucleus”, Amer. Math. Soc. Transl. Ser. 2, 1, Amer. Math. Soc., Providence, R.I., 1955, 67–93  crossref  mathscinet  zmath
4. D. B. A. Epstein, “Prime ends”, Proc. London Math. Soc. (3), 42:3 (1981), 385–414  crossref  mathscinet  zmath
5. В. А. Зорич, “Соответствие границ при $Q$-квазиконформных отображениях шара”, Докл. АН СССР, 145:6 (1962), 1209–1212  mathnet  mathscinet  zmath; англ. пер.: V. A. Zorich, “Correspondence of the boundaries in $Q$-quasiconformal mapping of a sphere”, Soviet Math. Dokl., 3 (1962), 1183–1186
6. В. Зорич, “Определение граничных элементов посредством сечений”, Докл. АН СССР, 164:4 (1965), 736–739  mathnet  mathscinet  zmath; англ. пер.: V. A. Zorič, “Determination of boundary elements by means of sections”, Soviet Math. Dokl., 6 (1965), 1284–1287
7. A. Björn, J. Björn, N. Shanmugalingam, “The {D}irichlet problem for $p$-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities”, J. Differential Equations, 259:7 (2015), 3078–3114  crossref  mathscinet  zmath  adsnasa
8. J. Milnor, Dynamics in one complex variable, Ann. of Math. Stud., 160, 3rd ed., Princeton Univ. Press, Princeton, NJ, 2006, viii+304 pp.  crossref  mathscinet  zmath
9. L. Rempe, “On prime ends and local connectivity”, Bull. Lond. Math. Soc., 40:5 (2008), 817–826  crossref  mathscinet  zmath
10. Г. Д. Суворов, Простые концы и последовательности плоских отображений, Наукова думка, Киев, 1986, 160 с.  mathscinet
11. T. Adamowicz, A. Björn, J. Björn, N. Shanmugalingam, “Prime ends for domains in metric spaces”, Adv. Math., 238 (2013), 459–505  crossref  mathscinet  zmath
12. T. Adamowicz, “Prime ends in metric spaces and quasiconformal-type mappings”, Anal. Math. Phys., 9:4 (2019), 1941–1975  crossref  mathscinet  zmath  adsnasa
13. Д. А. Ковтонюк, В. И. Рязанов, “Простые концы и классы Орлича–Соболева”, Алгебра и анализ, 27:5 (2015), 81–116  mathnet  mathscinet  zmath; англ. пер.: D. A. Kovtonyuk, V. I. Ryazanov, “Prime ends and Orlicz–Sobolev classes”, St. Petersburg Math. J., 27:5 (2016), 765–788  crossref
14. T. Kuusalo, “Quasiconformal mappings without boundary extensions”, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 331–338  crossref  mathscinet  zmath
15. E. C. Schlesinger, “Conformal invariants and prime ends”, Amer. J. Math., 80 (1958), 83–102  crossref  mathscinet  zmath
16. R. Näkki, Boundary behavior of quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 484, Suomalainen Tiedeakademia, Helsinki, 1970, 50 pp.  crossref  mathscinet  zmath
17. R. Näkki, “Prime ends and quasiconformal mappings”, J. Anal. Math., 35 (1979), 13–40  crossref  mathscinet  zmath
18. J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp.  crossref  mathscinet  zmath
19. M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 11, Suomalainen Tiedeakatemia, Helsinki, 1976, 44 pp.  mathscinet  zmath
20. M. Vuorinen, “On the boundary behavior of locally $K$-quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 5:1 (1980), 79–95  crossref  mathscinet  zmath
21. O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp.  crossref  mathscinet  zmath
22. Е. А. Севостьянов, “О граничном продолжении и равностепенной непрерывности семейств отображений в терминах простых концов”, Алгебра и анализ, 30:6 (2018), 97–146  mathnet  mathscinet  zmath; англ. пер.: E. A. Sevost'yanov, “Boundary behavior and equicontinuity for families of mappings in terms of prime ends”, St. Petersburg Math. J., 30:6 (2019), 973–1005  crossref
23. M. Cristea, “Boundary behaviour of the mappings satisfying generalized inverse modular inequalities”, Complex Var. Elliptic Equ., 60:4 (2015), 437–469  crossref  mathscinet  zmath
24. С. К. Водопьянов, “О граничном соответствии при квазиконформных отображениях пространственных областей”, Сиб. матем. журн., 16:3 (1975), 630–633  mathnet  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, “On a boundary correspondence for quasiconformal mappings of three-dimensional domains”, Siberian Math. J., 16:3 (1975), 487–490  crossref
25. В. М. Гольдштейн, С. К. Водопьянов, “Метрическое пополнение области при помощи конформной емкости, инвариантное при квазиконформных отображениях”, Докл. АН СССР, 238:5 (1978), 1040–1042  mathnet  mathscinet  zmath; англ. пер.: V. M. Gol'dšteĭn, S. K. Vodop'janov, “Metric completion of a domain by using a conformal capacity invariant under quasi-conformal mappings”, Soviet Math. Dokl., 19:1 (1978), 158–161
26. С. К. Водопьянов, В. М. Гольдштейн, Ю. Г. Решетняк, “О геометрических свойствах функций с первыми обощенными производными”, УМН, 34:1(205) (1979), 17–65  mathnet  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, V. M. Gol'dshtein, Yu. G. Reshetnyak, “On geometric properties of functions with generalized first derivatives”, Russian Math. Surveys, 34:1 (1979), 19–74  crossref  adsnasa
27. В. И. Кругликов, “Простые концы пространственных областей с переменными границами”, Докл. АН СССР, 297:5 (1987), 1047–1050  mathnet  mathscinet  zmath; англ. пер.: V. I. Kruglikov, “Prime ends of spatial domains with variable boundaries”, Soviet Math. Dokl., 36:3 (1988), 565–568
28. С. K. Водопьянов, “О регулярности отображений, обратных к соболевским”, Матем. сб., 203:10 (2012), 3–32  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, “Regularity of mappings inverse to Sobolev mappings”, Sb. Math., 203:10 (2012), 1383–1410  crossref  adsnasa
29. С. К. Водопьянов, “Операторы композиции весовых пространства Соболева и теория $\mathscr Q_p$-гомеоморфизмов”, Докл. РАН. Матем., информ., проц. упр., 494 (2020), 21–25  mathnet  crossref  zmath; англ. пер.: S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms”, Dokl. Math., 102:2 (2020), 371–375  crossref  mathscinet
30. С. К. Водопьянов, “Об аналитических и геометрических свойствах отображений в теории $\mathscr Q_{q,p}$-гомеоморфизмов”, Матем. заметки, 108:6 (2020), 925–929  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, “On the analytic and geometric properties of mappings in the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Math. Notes, 108:6 (2020), 889–894  crossref
31. С. К. Водопьянов, “О регулярности отображений, обратных к соболевским, и теория $\mathscr Q_{q,p}$-гомеоморфизмов”, Сиб. матем. журн., 61:6 (2020), 1257–1299  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Siberian Math. J., 61:6 (2020), 1002–1038  crossref
32. С. К. Водопьянов, А. О. Томилов, “Функциональные и аналитические свойства одного класса отображений квазиконформного анализа”, Изв. РАН. Сер. матем., 85:5 (2021), 58–109  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  crossref  adsnasa
33. С. К. Водопьянов, “Об эквивалентности двух подходов к задачам квазиконформного анализа”, Сиб. матем. журн., 62:6 (2021), 1252–1270  mathnet  crossref  zmath; англ. пер.: S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  crossref  mathscinet
34. С. К. Водопьянов, “О совпадении функций множества в квазиконформном анализе”, Матем. сб., 213:9 (2022), 3–33  mathnet  crossref; англ. пер.: S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
35. С. К. Водопьянов, “Основы квазиконформного анализа двухиндексной шкалы пространственных отображений”, Сиб. матем. журн., 59:5 (2018), 1020–1056  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodopyanov, “Basics of the quasiconformal analysis of a two-index scale of spatial mappings”, Siberian Math. J., 59:5 (2018), 805–834  crossref
36. С. К. Водопьянов, “О дифференцируемости отображений класса Соболева $W^1_{n-1}$ с условиями на функцию искажения”, Сиб. матем. журн., 59:6 (2018), 1240–1267  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodopyanov, “Differentiability of mappings of the Sobolev space $W_{n-1}^1$ with conditions on the distortion function”, Siberian Math. J., 59:6 (2018), 983–1005  crossref
37. А. Д. Ухлов, “Отображения, порождающие вложения пространств Соболева”, Сиб. матем. журн., 34:1 (1993), 185–192  mathnet  mathscinet  zmath; англ. пер.: A. D. Ukhlov, “On mappings generating the embeddings of Sobolev spaces”, Siberian Math. J., 34:1 (1993), 165–171  crossref
38. С. К. Водопьянов, А. Д. Ухлов, “Пространства Соболева и $(P,Q)$-квазиконформные отображения групп Карно”, Сиб. матем. журн., 39:4 (1998), 776–795  mathnet  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682  crossref
39. С. К. Водопьянов, А. Д. Ухлов, “Операторы суперпозиции в пространствах Соболева”, Изв. вузов. Матем., 2002, № 10, 11–33  mathnet  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russian Math. (Iz. VUZ), 46:10 (2002), 9–31
40. С. Л. Соболев, Некоторые применения функционального анализа в математической физике, Изд-во Ленингр. ун-та, Л., 1950, 255 с.  mathscinet  zmath; англ. пер.: S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, R.I., 1963, vii+239 с.  mathscinet  zmath
41. В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.  mathscinet  zmath; англ. пер.: V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 с.  crossref  mathscinet  zmath; Sobolev spaces. With applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, 2nd rev. and augm. ed., Springer, Heidelberg, 2011, xxviii+866 pp.  crossref  mathscinet  zmath
42. Г. Д. Мостов, “Квазиконформные отображения в $n$-мерном пространстве и жесткость гиперболических пространственных форм”, Математика, 16:5 (1972), 105–157  mathnet  zmath; пер. с англ.: G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104  crossref  mathscinet  zmath
43. F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY, 1969), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193  crossref  mathscinet  zmath
44. Ю. Г. Решетняк, Пространственные отображения с ограниченным искажением, Наука, Новосибирск, 1982, 286 с.  mathscinet  zmath; англ. пер.: Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xvi+362 с.  crossref  mathscinet  zmath
45. F. W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114 (1965), 1–70  crossref  mathscinet  zmath
46. H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen im Raum”, Comment. Math. Helv., 44 (1969), 284–307  mathscinet  zmath
47. J. Lelong-Ferrand, “Étude d'une classe d'applications liées à des homomorphismes d'algébres de fonctions, et généralisant les quasi-conformes”, Duke Math. J., 40 (1973), 163–186  crossref  mathscinet  zmath
48. C. К. Водопьянов, “Допустимые замены переменных для функций классов Соболева на (суб)римановых многообразиях”, Матем. сб., 210:1 (2019), 63–112  mathnet  crossref  mathscinet  zmath; англ. пер.: S. K. Vodopyanov, “Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds”, Sb. Math., 210:1 (2019), 59–104  crossref  adsnasa
49. A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17, 25 pp.  crossref  mathscinet  zmath
50. J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993, vi+363 pp.  mathscinet  zmath
51. T. Rado, P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp.  crossref  mathscinet  zmath
52. M. Гусман, Дифференцирование интегралов в $\mathbb{R}^n$, Математика: новое в зарубежной науке, 9, Мир, М., 1978, 200 с.  mathscinet; пер. с англ.: M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 с.  crossref  mathscinet  zmath
53. С. К. Водопьянов, А. Д. Ухлов, “Функции множества и их приложения в теории пространств Лебега и Соболева. I”, Матем. тр., 6:2 (2003), 14–65  mathnet  mathscinet  zmath; англ. пер.: S. K. Vodop'yanov, A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Siberian Adv. Math., 14:4 (2004), 78–125  mathscinet  zmath
54. S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Владикавк. матем. журн., 24:4 (2022), 58–69  mathnet  crossref  mathscinet  zmath
55. D. V. Isangulova, S. K. Vodopyanov, “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96  mathnet  mathscinet  zmath
56. Ю. Г. Решетняк, “О понятии емкости в теории функций с обобщенными производными”, Сиб. матем. журн., 10:5 (1969), 1109–1138  mathnet  mathscinet  zmath; англ. пер.: Yu. G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Siberian Math. J., 10:5 (1969), 818–842  crossref
57. Г. Е. Шилов, Математический анализ. Специальный курс, Физматгиз, М., 1961, 436 с.  mathscinet  zmath; англ. пер.: G. Ye. Shilov, Mathematical analysis. A special course, Pergamon Press, Oxford–New York–Paris, 1965, xii+481 с.  mathscinet  zmath
58. F. Hausdorff, Set theory, Transl. from the German, 2nd ed., Chelsea Publishing Co., New York, 1962, 352 pp.  mathscinet  zmath
59. R. R. Salimov, E. A. Sevost'yanov, “$ACL$ and differentiability of open discrete ring $(p, Q)$-mappings”, Mat. Stud., 35:1 (2011), 28–36  mathscinet  zmath
60. В. И. Рязанов, Е. А. Севостьянов, “Равностепенная непрерывность квазиконформных в среднем отображений”, Сиб. матем. журн., 52:3 (2011), 665–679  mathnet  mathscinet  zmath; англ. пер.: V. I. Ryazanov, E. A. Sevost'yanov, “Equicontinuity of mean quasiconformal mappings”, Siberian Math. J., 52:3 (2011), 524–536  crossref
61. Р. Р. Салимов, “Абсолютная непрерывность на линиях и дифференцируемость одного обобщения квазиконформных отображений”, Изв. РАН. Сер. матем., 72:5 (2008), 141–148  mathnet  crossref  mathscinet  zmath; англ. пер.: R. R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. Math., 72:5 (2008), 977–984  crossref  adsnasa
62. R. Salimov, “$ACL$ and differentiability of $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301  mathscinet  zmath
63. Р. Р. Салимов, Е. А. Севостьянов, “Теория кольцевых $Q$-отображений в геометрической теории функций”, Матем. сб., 201:6 (2010), 131–158  mathnet  crossref  mathscinet; англ. пер.: R. R. Salimov, E. A. Sevost'yanov, “The theory of shell-based $Q$-mappings in geometric function theory”, Sb. Math., 201:6 (2010), 909–934  crossref  zmath  adsnasa
64. E. Sevost'yanov, S. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions, 2018, arXiv: 1801.01808v9
65. Р. Р. Салимов, Е. А. Севостьянов, “О некоторых локальных свойствах пространственных обобщенных квазиизометрий”, Матем. заметки, 101:4 (2017), 594–610  mathnet  crossref  mathscinet  zmath; англ. пер.: R. R. Salimov, E. A. Sevost'yanov, “On local properties of spatial generalized quasi-isometries”, Math. Notes, 101:4 (2017), 704–717  crossref
66. R. Salimov, “On $Q$-homeomorphisms with respect to $p$-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213  mathscinet  zmath
67. М. В. Трямкин, “Граничное соответствие для гомеоморфизмов с весовым ограниченным $(p,q)$-искажением”, Матем. заметки, 102:4 (2017), 632–636  mathnet  crossref  mathscinet  zmath; англ. пер.: M. V. Tryamkin, “Boundary correspondence for homeomorphisms with weighted bounded $(p,q)$-distortion”, Math. Notes, 102:4 (2017), 591–595  crossref
68. J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1-2 (1975), 131–144  crossref  mathscinet  zmath  adsnasa
69. В. А. Шлык, “О равенстве $p$-емкости и $p$-модуля”, Сиб. матем. журн., 34:6 (1993), 216–221  mathnet  mathscinet  zmath; англ. пер.: V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Siberian Math. J., 34:6 (1993), 1196–1200  crossref
70. H. Aikawa, M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–88  mathscinet  zmath
71. V. Gol'dshtein, A. Ukhlov, Boundary values of functions of Dirichlet spases $L^1_2$ on capacitary boundaries, 2014, arXiv: 1405.3472
72. E. Afanas'eva, V. Ryazanov, R. Salimov, E. Sevost'yanov, “On boundary extension of Sobolev classes with critical exponent by prime ends”, Lobachevskii J. Math., 41:11 (2020), 2091–2102  crossref  mathscinet  zmath

Образец цитирования: S. K. Vodopyanov, A. O. Molchanova, “The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms”, Изв. РАН. Сер. матем., 87:4 (2023), 47–90; Izv. Math., 87:4 (2023), 683–725
Цитирование в формате AMSBIB
\RBibitem{VodMol23}
\by S.~K.~Vodopyanov, A.~O.~Molchanova
\paper The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms
\jour Изв. РАН. Сер. матем.
\yr 2023
\vol 87
\issue 4
\pages 47--90
\mathnet{http://mi.mathnet.ru/im9376}
\crossref{https://doi.org/10.4213/im9376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4656039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023IzMat..87..683V}
\transl
\jour Izv. Math.
\yr 2023
\vol 87
\issue 4
\pages 683--725
\crossref{https://doi.org/10.4213/im9376e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001088986700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85174951409}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/im9376
  • https://doi.org/10.4213/im9376
  • https://www.mathnet.ru/rus/im/v87/i4/p47
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Статистика просмотров:
    Страница аннотации:443
    PDF русской версии:36
    PDF английской версии:70
    HTML русской версии:165
    HTML английской версии:145
    Список литературы:82
    Первая страница:12
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024