Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1993, Volume 41, Issue 1, Pages 143–155
DOI: https://doi.org/10.1070/IM1993v041n01ABEH002183
(Mi im930)
 

On the denseness of the set of nonintegrable hamiltonians

S. I. Pidkuiko
References:
Abstract: For the set of Hamiltonian systems in a $2n$-dimensional phase space with Hamiltonians that are real analytic in a neighborhood of an equilibrium state of the system a generalization of Siegel's result is proved for $n>2$: the set of nonintegrable Hamiltonians is everywhere dense in the set of all Hamiltonians of the above form.
Received: 10.02.1991
Bibliographic databases:
UDC: 517.987
MSC: Primary 70H15, 70H05; Secondary 34C20, 58F05
Language: English
Original paper language: Russian
Citation: S. I. Pidkuiko, “On the denseness of the set of nonintegrable hamiltonians”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 143–155
Citation in format AMSBIB
\Bibitem{Pid92}
\by S.~I.~Pidkuiko
\paper On the denseness of the set of nonintegrable hamiltonians
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 41
\issue 1
\pages 143--155
\mathnet{http://mi.mathnet.ru//eng/im930}
\crossref{https://doi.org/10.1070/IM1993v041n01ABEH002183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1208154}
\zmath{https://zbmath.org/?q=an:0794.70007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..41..143P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LZ84700007}
Linking options:
  • https://www.mathnet.ru/eng/im930
  • https://doi.org/10.1070/IM1993v041n01ABEH002183
  • https://www.mathnet.ru/eng/im/v56/i4/p863
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024