|
This article is cited in 1 scientific paper (total in 1 paper)
New estimates for short Kloosterman sums with weights
N. K. Semenova Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
In the paper we obtain a new bound for short Kloosterman sums modulo a prime
with a weight. The derivation of the bound is based on Karatsuba's
method (1993–1995) of estimating incomplete Kloosterman sums and on a modification of the method proposed by Bourgain and Garaev (2014).
The theorems proved in the paper refine results obtained earlier by
Korolev (2010).
Keywords:
short Kloosterman sums, reciprocals modulo a given integer.
Received: 19.03.2021 Revised: 12.05.2021
§ 1. Introduction In 1926, Kloosterman [1] considered trigonometric sums of the form
$$
\begin{equation*}
S(m;a, b)=\sum_{\substack{\nu=1\\ (\nu, m)=1}}^{m}{e_m(a\overline{\nu}+b\nu)}, \qquad e_m(\nu)=e^{2\pi i \nu/m},
\end{equation*}
\notag
$$
where $m$, $a$, and $b$ are integers and $(a, m)\,{=}\,(\nu, m)\,{=}\,1$. We denote by $\overline{\nu}$ the residue inverse to $\nu$ modulo $m$, $\nu \overline{\nu} \equiv 1 \pmod{m}$. These sums were later called Kloosterman sums. By an incomplete Kloosterman sum we mean a sum of the form
$$
\begin{equation}
\sum_{\substack{\nu \leqslant x\\ (\nu, m)=1}}{e_m(a\overline{\nu}+b\nu)}, \qquad 1<x<m.
\end{equation}
\tag{1.1}
$$
When $x \geqslant m^{1/2+\varepsilon}$, a non-trivial estimate for sums of this kind follows from classical results of Weil (see [2] and [3]). For estimates of “short” sums satisfying $x \leqslant \sqrt{m}$, Karatsuba proposed a fundamentally new method in the early 1990s (see [4]–[6]), which was further developed in papers of Bourgain and Garaev [7] and Korolev (see [8]–[11]). For a sufficiently detailed survey of studies on this topic, see [12]. Along with the sums (1.1), so-called incomplete Kloosterman sums with weights are considered, that is, sums of the form
$$
\begin{equation}
S(x)=S(m,x;f,a,b)=\sum_{\substack{\nu \leqslant x\\ (\nu, m)=1}}{f(\nu)e_m(a\overline{\nu}+ b\nu)},
\end{equation}
\tag{1.2}
$$
where $f(\nu)$ is an arithmetic function. As in the case of the sums (1.1), a bound for the sums (1.2) when $x \geqslant m^{1/2+\varepsilon}$ can be derived from Weil’s bound (see [2]). The case of a short sum ($x \leqslant \sqrt{m}$) was first considered in [9]. In the present paper, using the ideas and techniques in [5]–[9] and [13], we refine bounds obtained in [9] for the sums (1.2).
§ 2. Statement of main results Let us introduce some notation needed below. - • $m$ is a a sufficiently large prime, the modulus of the Kloosterman sum.
- • $p, p_1, \dots , q, q_1, \dots$ stand for primes.
- • $m_0, m_1, \dots$, $c_0, c_1, \dots$ are absolute constants.
- • $P^{-}(\nu)$ and $P^{+}(\nu)$ are the least and greatest prime divisors of a number $\nu$, respectively.
- • $\pi(x)$ is the number of primes not exceeding $x$.
- • $\mu(\nu)$ is the Möbius function.
- • $b(n)$ is the characteristic function of the set of numbers representable as the sum of two squares of integers. In particular, $b(\nu^2)=1$, $b(\nu^{2k+1})=b(\nu)$.
- • $\tau_r(\nu)$ is the multidimensional divisor function, that is, the number of solutions of the equation $x_1 \cdots x_r=\nu$ in positive integers $x_1, \dots, x_r$.
- • Everywhere below, $f(n)$ stands for any of the functions $\tau_r(\nu)$, $\mu(\nu)$, $\mu^2(\nu)$, $b(n)$.
- • $\alpha$ is a parameter depending on the chosen function $f(\nu)$. $\alpha=r$ when $f(\nu)=\tau_r(\nu)$, $\alpha=1/2 $ when $f(\nu)=b(\nu)$, and $\alpha=1$ in the case when $f(\nu)=\mu^2(\nu)$ and $f(\nu)=\mu(\nu)$.
- • $\beta$ is a parameter depending on the chosen function $f(\nu)$. $\beta=1$ when $f(\nu)=b(\nu)$, $\beta=0$ otherwise.
- • $F(x)=\sum_{\nu \leqslant x}| f(\nu)|$.
The main result for “homogeneous” sums (that is, those that satisfy the condition $b\equiv0 \pmod{m}$) is the following theorem. Theorem 1. Let $m\,{\geqslant}\, m_0$ be a sufficiently large prime, $(a,m)\,{=}\,1$, and let
$$
\begin{equation*}
\exp\bigl(c_0 (\ln m)^{2/3} (\ln\ln m)^{4/3}\bigr) \leqslant x \leqslant \sqrt{m}.
\end{equation*}
\notag
$$
Then
$$
\begin{equation*}
\Biggl| \sum_{\substack{\nu \leqslant x\\ (\nu, m)=1}}{f(\nu) e_m(a\overline{\nu})} \Biggr| \ll F(x)\Delta,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\Delta=\biggl(\frac{\ln m}{(\ln x)^{3/2}} (\ln\ln m)^2 \biggr)^\alpha (\ln\ln m)^\beta,
\end{equation*}
\notag
$$
and the constant in the Vinogradov symbol is absolute. The following theorem holds in the case of inhomogeneous short sums with weights ($b\not\equiv0 \pmod{m}$). Theorem 2. Let $m\,{\geqslant}\, m_1$ be a sufficiently large prime, $(a,m)\,{=}\,1$, and let
$$
\begin{equation*}
\exp\bigl(c_1 (\ln m)^{2/3} (\ln\ln m)^{4/3}\bigr) \leqslant x \leqslant \sqrt{m}.
\end{equation*}
\notag
$$
Then
$$
\begin{equation*}
\Biggl| \sum_{\substack{\nu \leqslant x\\ (\nu, m)=1}}{f(\nu)e_m(a\overline{\nu}+b\nu)} \Biggr| \ll F(x)\Delta,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\Delta=\biggl(\frac{\sqrt{\ln m}}{(\ln x)^{3/4}} \ln\ln m \biggr)^\alpha (\ln\ln m)^\beta,
\end{equation*}
\notag
$$
and the constant in the Vinogradov symbol is absolute. Remark 1. The bound obtained in [9] for the sum (1.2) has a decreasing factor of the form
$$
\begin{equation*}
\biggl(\frac{(\ln m)^ {4/5}}{\ln x} (\ln\ln m)^{1/5} \biggr)^{{5}\alpha /22} \ln\ln m.
\end{equation*}
\notag
$$
It can readily be seen that the inequalities in Theorems 1 and 2 are more precise. Remark 2. In the special case $x=m^\varepsilon$, $f(\nu)=\tau_r(\nu)$, where $0<\varepsilon \leqslant 0.5$, $r \geqslant 2$, are fixed numbers, the bounds in Theorems 1 and 2 take the form
$$
\begin{equation*}
\begin{aligned} \, \sum_{\substack{\nu \leqslant x\\ (\nu, m)=1}}{f(\nu) e_m(a\overline{\nu})} &\ll_\varepsilon x (\ln x)^{r-1} \biggl(\frac{(\ln\ln m)^ {2}}{\sqrt{\ln m}}\biggr)^r \ll_\varepsilon x (\ln x)^{r/2-1} (\ln\ln x)^{2r}, \\ \sum_{\substack{\nu \leqslant x\\ (\nu, m)=1}}{f(\nu) e_m(a\overline{\nu}+b\nu)} &\ll_\varepsilon x (\ln x)^{r-1} \biggl(\frac{(\ln\ln m)^ {2}}{\sqrt[4]{\ln m}}\biggr)^r \ll_\varepsilon x (\ln x)^{(3/4)r-1} (\ln\ln x)^{2r}. \end{aligned}
\end{equation*}
\notag
$$
Using Theorems 1 and 2, we can show that the following assertions hold. Theorem 3. Let $m\,{\geqslant}\, m_0$ be a sufficiently large prime, $(a,m)\,{=}\,1$, and let
$$
\begin{equation*}
\exp\bigl(c_0 (\ln m)^{2/3} (\ln\ln m)^{4/3}\bigr) \leqslant x \leqslant \sqrt{m}.
\end{equation*}
\notag
$$
Then the following equations hold:
$$
\begin{equation*}
\begin{aligned} \, \sum_{\nu \leqslant x}{\tau_r(\nu) \biggl\{ \frac{a\overline{\nu}}{m}\biggr\}} &=\frac{1}{2} \biggl( \sum_{\nu \leqslant x}{\tau_r(\nu)}\biggr)(1+O(\Delta_1)), \\ \sum_{\nu \leqslant x}{b(\nu) \biggl\{ \frac{a\overline{\nu}}{m}\biggr\}} &=\frac{1}{2} \biggl( \sum_{\nu \leqslant x}{b(\nu)}\biggr)(1+O(\Delta_1)), \\ \sum_{\nu \leqslant x}{\mu^2(\nu) \biggl\{ \frac{a\overline{\nu}}{m}\biggr\}} &=\frac{1}{2} \biggl( \sum_{\nu \leqslant x}\mu^2(\nu) \biggr) (1+O(\Delta_1)), \\ \sum_{\substack{\nu \leqslant x\\ \mu(\nu)=(-1)^k}} \biggl\{ \frac{a\overline{\nu}}{m}\biggr\} &=\frac{1}{2} \Biggl( \sum_{\substack{\nu \leqslant x\\ \mu(\nu)= (-1)^k}} 1 \Biggr) (1+O(\Delta_1)), \qquad k=0,1, \end{aligned}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\Delta_1=\biggl(\frac{\ln m}{(\ln x)^{3/2}} (\ln\ln m)^2 \biggr)^\alpha (\ln\ln m)^{1+\beta}.
\end{equation*}
\notag
$$
Theorem 4. Let $m\,{\geqslant}\, m_0$ be a sufficiently large prime, $(a,m)\,{=}\,1$, and let
$$
\begin{equation*}
\exp\bigl(c_0 (\ln m)^{2/3} (\ln\ln m)^{4/3}\bigr) \leqslant x \leqslant \sqrt{m}.
\end{equation*}
\notag
$$
Then the following equations hold:
$$
\begin{equation*}
\begin{aligned} \, \sum_{\nu \leqslant x}{\tau_r(\nu) \biggl\{ \frac{a\overline{\nu}+b\nu}{m}\biggr\}} &= \frac{1}{2} \biggl( \sum_{\nu \leqslant x}{\tau_r(\nu)}\biggr)(1+O(\Delta_2)), \\ \sum_{\nu \leqslant x}{b(\nu) \biggl\{ \frac{a\overline{\nu}+b\nu}{m}\biggr\}} &=\frac{1}{2} \biggl( \sum_{\nu \leqslant x}{b(\nu)}\biggr)(1+O(\Delta_2)), \\ \sum_{\nu \leqslant x}{\mu^2(\nu) \biggl\{ \frac{a\overline{\nu}+b\nu}{m}\biggr\}} &=\frac{1}{2} \biggl( \sum_{\nu \leqslant x}\mu^2(\nu) \biggr)(1+O(\Delta_2)), \\ \sum_{\substack{\nu \leqslant x\\ \mu(\nu)=(-1)^k}} \biggl\{ \frac{a\overline{\nu}+b\nu}{m}\biggr\} &=\frac{1}{2} \Biggl( \sum_{\substack{\nu \leqslant x\\ \mu(\nu)=(-1)^k}} 1 \Biggr) (1+O(\Delta_2)), \qquad k=0,1, \end{aligned}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\Delta_2=\biggl(\frac{\sqrt{\ln m}}{(\ln x)^{3/4}} \ln\ln m \biggr)^\alpha (\ln\ln m)^{1+\beta}.
\end{equation*}
\notag
$$
Remark 3. The following asymptotic formulae hold for the sums in the right-hand sides of the equations of Theorems 3 and 4:
$$
\begin{equation*}
\begin{gathered} \, \sum_{\substack{\nu \leqslant x\\ \mu(\nu)=(-1)^k}} 1=\frac{3x}{\pi^2}+O(\sqrt{x}), \qquad \sum_{\nu \leqslant x}\mu^2(\nu)=\frac{6x}{\pi^2}+O(\sqrt{x}), \\ \begin{split} \sum_{\nu \leqslant x}{\tau_r(\nu)} &=\frac{x (\ln x)^{r-1}}{(r-1)!}+O(x(\ln x)^{k-2}), \\ \sum_{\nu \leqslant x}{b(\nu)} &=K x (\ln x)^{-1/2}+O(x (\ln x)^{-3/2}), \end{split} \end{gathered}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
K=\biggl\{ \frac{1}{2} \prod_p\biggl( 1-\frac{1}{p^2}\biggr)^{-1} \biggr\}^{1/2}= 0.764\dots
\end{equation*}
\notag
$$
is the Landau–Ramanujan constant.
§ 3. Homogeneous short Kloosterman sums with weights3.1. Auxiliary assertions We need several auxiliary assertions. Lemma 1. Let $a_n, b_n \geqslant 0$, $n=1,\dots, N$, and let $k$ be an integer, $k \geqslant 2$. Then the following inequalities hold:
$$
\begin{equation*}
\biggl( \sum_{n=1}^{N}{a_{n}b_{n}}\biggr)^2 \leqslant \sum_{n=1}^{N}{a_n^2}\sum_{n=1}^{N}{b_n^2}, \qquad \biggl( \sum_{n=1}^{N}{a_{n}b_{n}}\biggr)^k \leqslant \biggl( \sum_{n=1}^{N}{a_n}\biggr)^{k-1} \biggl( \sum_{n=1}^{N}{a_{n}b_{n}^k}\biggr).
\end{equation*}
\notag
$$
Lemma 2. Let $N<m$ and let $J_{2k}(N)$ be the number of solutions of the congruence
$$
\begin{equation*}
\overline{p}_1+\dots +\overline{p}_k\equiv \overline{p}_{k+1}+\dots +\overline{p}_{2k} \pmod{m},
\end{equation*}
\notag
$$
in primes $p_1, \dots, p_{2k}$ such that $p_{1}, \dots , p_{2k} \leqslant N $. Then
$$
\begin{equation*}
J_{2k}(N)<(2k)^k N^k \left(1+\frac{N^{2k-1}}{m} \right).
\end{equation*}
\notag
$$
This is Theorem 6 in [7]. Corollary 1. Let $m$ be a prime, $k$ an integer, $2 \leqslant k<X<X_1 \leqslant 2X$, and $I_k(X)$ the number of solutions of the congruence
$$
\begin{equation*}
\overline{p}_1+\dots +\overline{p}_k\equiv \overline{p}_{k+1}+\dots +\overline{p}_{2k} \pmod{m}
\end{equation*}
\notag
$$
in primes $p_1, \dots, p_{2k}$ such that $X<p_1, \dots, p_{2k} \leqslant X_{1}$. Then
$$
\begin{equation*}
I_k(X)\leqslant (16k)^k X^k \biggl(1+\frac{X^{2k-1}}{m} \biggr).
\end{equation*}
\notag
$$
Lemma 3. Let $m$ be a prime, and $k, s \geqslant 2$ integers with $ k<P<P_1 \leqslant 2P$ and $s<Q<Q_1 \leqslant 2Q$. Further, let $\xi(p)$ and $\eta(q)$ be arbitrary arithmetic functions defined on the primes in the intervals $P<p \leqslant P_1$ and $Q<q \leqslant Q_1$, respectively, where
$$
\begin{equation*}
\begin{gathered} \, \max_{P<p\leqslant P _1} |\xi (p)|=\xi ,\qquad \max_{Q<q\leqslant Q_1} |\eta (q)|=\eta, \\ \sum_{P<p\leqslant P_1} |\xi(p)|= \xi_{0},\qquad \sum_{Q<q\leqslant Q_1}|\eta(q)|= \eta_{0}. \end{gathered}
\end{equation*}
\notag
$$
Then the sum
$$
\begin{equation*}
W_1=\sum_{P<p\leqslant P_{1}}\, \sum_{Q<q\leqslant Q_{1}} \xi(p) \eta(q) e_{m}(a\overline{p}\, \overline{q})
\end{equation*}
\notag
$$
satisfies the bound $|W_1| \leqslant \xi_0 \eta_0 \Delta$, in which
$$
\begin{equation*}
\begin{aligned} \, \Delta&=(4\xi \sqrt{k})^{1/s} (4\eta \sqrt{s})^{1/k} \biggl( \frac{P}{\xi_0}\biggr)^{1/s} \biggl( \frac{Q}{\eta_0}\biggr)^{1/k} \\ &\qquad\times \biggl( \biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{1/(2ks)}. \end{aligned}
\end{equation*}
\notag
$$
Proof. We follow the reasoning in [13]. First of all, we have
$$
\begin{equation*}
|W_1|=\biggl| \sum_q \eta(q) \sum_{p} \xi(p) e_{m}(a\overline{p}\, \overline{q})\biggr| \leqslant \sum_q |\eta(q)| \biggl| \sum_p \xi(p) e_{m}(a\overline{p}\, \overline{q}) \biggr|,
\end{equation*}
\notag
$$
where $\sum_p$ and $\sum_q$ stand for sums over the primes in the intervals $P<p \leqslant P_1$ and $Q<q \leqslant Q_1$, respectively. Taking the modulus of $W_1$ to a power $k$ and applying the second inequality in Lemma 1, we obtain
$$
\begin{equation*}
\begin{aligned} \, |W_1|^k &\leqslant \biggl(\sum_q|\eta(q)| \biggr)^{k-1}\sum_q |\eta(q)| \biggl| \sum_p \xi(p) e_{m}(a\overline{p}\, \overline{q}) \biggr|^k \\ &\leqslant \eta_{0}^{k-1}\eta \sum_q \biggl| \sum_p \xi(p) e_{m}(a\overline{p}\, \overline{q}) \biggr|^k \\ &= \eta_{0}^{k-1}\eta \sum_q \biggl| \sum_{p_1, \dots, p_k} \xi(p_1)\cdots \xi(p_k) e_{m}(a \overline{q}(\overline{p}_1+\dots+ \overline{p}_k)) \biggr| \\ &= \eta_{0}^{k-1}\eta \sum_q \Biggl| \sum_{\lambda=0}^{m-1} e_{m}(a \overline{q} \lambda) \sum_{\substack{p_1,\dots, p_k\\\overline{p}_1+\dots+ \overline{p}_k \equiv \lambda \ (\operatorname{mod} m)}} \xi(p_1)\cdots\xi(p_k) \Biggr|. \end{aligned}
\end{equation*}
\notag
$$
Writing
$$
\begin{equation*}
A_k(\lambda)=\sum_{\substack{p_1,\dots, p_k\\\overline{p}_1+\dots+ \overline{p}_k \equiv \lambda \ (\operatorname{mod} m)}} \xi(p_1)\cdots\xi(p_k),
\end{equation*}
\notag
$$
we have
$$
\begin{equation*}
|W_1|^k \leqslant \eta_{0}^{k-1}\eta \sum_q \biggl| \sum_{\lambda=0}^{m-1} e_{m}(a \overline{q} \lambda) A_k(\lambda) \biggr|.
\end{equation*}
\notag
$$
Let $\theta(q)$ be the argument of the inner sum. Then
$$
\begin{equation*}
|W_1|^k \leqslant \eta_{0}^{k-1}\eta \sum_q e^{-i \theta(q)}\!\sum_{\lambda=0}^{m-1} A_k(\lambda) e_{m}(a \overline{q} \lambda) =\eta_{0}^{k-1}\eta \!\sum_{\lambda= 0}^{m-1}A_k(\lambda) \sum_q e^{-i \theta(q)} e_m(a\overline{q}\lambda),
\end{equation*}
\notag
$$
and hence
$$
\begin{equation*}
|W_1|^k \leqslant \eta_{0}^{k-1}\eta \sum_{\lambda=0}^{m-1} |A_k(\lambda)| \biggl| \sum_q e^{-i \theta(q)} e_m(a\overline{q}\lambda) \biggr|.
\end{equation*}
\notag
$$
Raising this inequality to the power $s$ and applying Lemma 1 again, we obtain
$$
\begin{equation*}
|W_1|^{ks} \leqslant \eta_{0}^{s(k-1)}\eta^{s} \biggl( \sum_{\lambda=0}^{m-1} |A_k(\lambda)| \biggr)^{s-1} \sum_{\lambda=0}^{m-1} |A_k(\lambda)| \biggl| \sum_q e^{-i \theta(q)} e_m(a\overline{q}\lambda) \biggr|^s.
\end{equation*}
\notag
$$
We estimate the first sum:
$$
\begin{equation*}
\begin{aligned} \, \sum_{\lambda=0}^{m-1} |A_k(\lambda)| &\leqslant \sum_{\lambda=0}^{m-1} \sum_{\substack{p_1, \dots, p_k\\\overline{p}_1+\dots+ \overline{p}_k \equiv \lambda \ (\operatorname{mod} m) }} |\xi(p_1)| \cdots |\xi(p_k)| \\ &= \sum_{p_1, \dots, p_k} |\xi(p_1)| \cdots |\xi(p_k)|=\biggl( \sum_p |\xi(p)| \biggr)^k= \xi_0^k. \end{aligned}
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
|W_1|^{ks} \leqslant \eta_{0}^{s(k-1)}\eta^{s} \xi_0^{k(s-1)} \sum_{\lambda=0}^{m-1} |A_k(\lambda)| \biggl| \sum_q e^{-i \theta(q)} e_m(a\overline{q}\lambda) \biggr|^s.
\end{equation*}
\notag
$$
Squaring this inequality and using Lemma 1, we see that
$$
\begin{equation*}
|W_1|^{2ks} \leqslant \eta_{0}^{2s(k-1)} \eta^{2s} \xi_0^{2k(s-1)} BC,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
B=\sum_{\lambda=0}^{m-1} |A_k(\lambda)|^2, \qquad C=\sum_{\lambda=0}^{m-1} \biggl| \sum_q e^{-i \theta(q)} e_m(a\overline{q}\lambda) \biggr|^{2s}.
\end{equation*}
\notag
$$
Estimating the sum $B$, we have
$$
\begin{equation*}
\begin{aligned} \, B &=\sum_{\lambda=0}^{m-1} |A_k(\lambda)|^2=\sum_{\lambda=0}^{m-1} \Biggl| \sum_{\substack{p_1, \dots, p_k\\\overline{p}_1+ \dots+\overline{p}_k \equiv \lambda \ (\operatorname{mod} m)}} \xi(p_1) \cdots \xi(p_k) \Biggr|^2 \\ &\leqslant \sum_{\lambda=0}^{m-1} \sum_{\substack{p_1,\dots, p_{2k}\\ \overline{p}_1+\dots+ \overline{p}_k \equiv \lambda \equiv \overline{p}_{k+1}+\dots+ \overline{p}_{2k} \ (\operatorname{mod}m)}} |\xi(p_1)| \cdots |\xi(p_{2k})| \\ &\leqslant \xi^{2k} \sum_{\lambda=0}^{m-1} \sum_{\substack{p_1, \dots, p_{2k}\\ \overline{p}_1+\dots+ \overline{p}_k \equiv \lambda \equiv \overline{p}_{k+1}+\dots+ \overline{p}_{2k} \ (\operatorname{mod}m)}} 1 \\ &=\xi^{2k} \sum_{\substack{p_1, \dots, p_{2k}\\ \overline{p}_1+\dots+ \overline{p}_k \equiv\overline{p}_{k+1}+\dots+ \overline{p}_{2k} \ (\operatorname{mod}m)}} 1=\xi^{2k} I_k(P). \end{aligned}
\end{equation*}
\notag
$$
Estimating the sum $C$, we have
$$
\begin{equation*}
\begin{aligned} \, C&=\sum_{\lambda=0}^{m-1} \sum_{Q<q_1, \dots, q_{2s} \leqslant Q_1} e^{-i (\theta(q_1)+ \dots -\theta(q_{2s}))} e_m(a\lambda (\overline{q}_1 +\dots -\overline{q}_{2s})) \\ &=\sum_{Q<q_1, \dots, q_{2s} \leqslant Q_1} e^{-i (\theta(q_1)+\dots -\theta(q_{2s}))} \sum_{\lambda=0}^{m-1}e_m(a\lambda (\overline{q}_1 +\dots -\overline{q}_{2s})), \\ |C| &\leqslant \sum_{\substack{Q<q_1, \dots, q_{2s} \leqslant Q_1 \\ \overline{q}_1+\dots+ \overline{q}_s \equiv \overline{q}_{s+1}+\dots+ \overline{q}_{2s} \ (\operatorname{mod}m)}} m=m I_s(Q). \end{aligned}
\end{equation*}
\notag
$$
Thus, the following inequality holds:
$$
\begin{equation*}
|W_1|^{2ks} \leqslant \eta_0^{2s(k-1)}\eta^{2s}\xi_0^{2k(s-1)} \xi^{2k} m I_k(P) I_s(Q).
\end{equation*}
\notag
$$
Using Lemma 2, we obtain
$$
\begin{equation*}
\begin{aligned} \, &|W_1|^{2ks} {\leqslant}\, (\eta_0 \xi_0)^{2ks}(\eta_0^{-1} \eta)^{2s} (\xi_0^{-1}\xi)^{2k} m (16k)^k (16s)^s P^k Q^s \biggl( 1{\kern1pt}{+}{\kern1pt}\frac{P^{2k-1}}{m} \biggr) \biggl( 1{\kern1pt}{+}{\kern1pt}\frac{Q^{2s-1}}{m} \biggr) \\ &\quad = (\eta_0 \xi_0)^{2ks}(4 \eta_0^{-1} \eta \sqrt{s})^{2s} (4\xi_0^{-1}\xi \sqrt{k})^{2k} P^{2k} Q^{2s} \biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr). \end{aligned}
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
|W_1| \leqslant \xi_0 \eta_0 \Delta,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\Delta\,{=}\,(4\xi \sqrt{k})^{1/s} (4\eta \sqrt{s})^{1/k} \biggl( \frac{P}{\xi_0}\biggr)^{1/s} \!\biggl( \frac{Q}{\eta_0}\biggr)^{1/k} \! \biggl( \biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{1/(2ks)}\! .
\end{equation*}
\notag
$$
This completes the proof of the lemma. Corollary 2. In the case when $\xi(\nu)=\eta(\nu)=f(\nu)$, the sum $W_1$ satisfies the bound $|W_1| \ll PQ \Delta_1$, where
$$
\begin{equation*}
\Delta_1=4 k^{1/(2s)} s^ {1/(2k)} \biggl( \biggl( \frac{\sqrt{m}}{P^k}+\frac {P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{1/(2ks)}.
\end{equation*}
\notag
$$
Proof. We write the bound in Lemma 3 in the form
$$
\begin{equation*}
\begin{aligned} \, |W_1| &\leqslant \xi_0^{1-1/s} (\xi P)^{1/s} \eta_0^{1-1/k} (\eta Q)^{1/k} (4\sqrt{s})^{1/k} (4\sqrt{k})^{1/s} \\ &\qquad\times \biggl( \biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{1/(2ks)}. \end{aligned}
\end{equation*}
\notag
$$
Consider the case $\xi(\nu)=\eta(\nu)=\tau_r(\nu)$. Let a constant $x_0$ be chosen in such a way that the inequality
$$
\begin{equation*}
\pi_1(x)=\pi(2x)-\pi(x) \leqslant \frac{2x}{\ln x}
\end{equation*}
\notag
$$
holds for all $x \geqslant x_0$. Then, noting that $\xi=\eta=r$ and
$$
\begin{equation*}
\xi_0=r (\pi (P_1)-\pi(P)) \leqslant r \pi_1(P), \qquad \eta_0 \leqslant r \pi_1(Q),
\end{equation*}
\notag
$$
we have, provided that $P, Q \geqslant \max(x_0, e^{2r^2})$,
$$
\begin{equation*}
\begin{aligned} \, \xi_0 (\xi_0^{-1} \xi )^{1/s} &=\xi_0^{1-1/s} \xi^{1/s} \leqslant \bigl(r\pi_1(P)\bigr)^{1-1/s} r^{1/s}= r \bigl( \pi_1(P)\bigr)^{1-1/s} \\ &\leqslant r \biggl( \frac{2P}{\ln{P}} \biggr)^{1-1/s}=r \biggl( \frac{2}{\ln{P}} \biggr)^{1-1/s} P^{1-1/s} \leqslant r \sqrt{\frac{2}{\ln P}}\, P^{1-1/s} \leqslant P^{1-1/s}. \end{aligned}
\end{equation*}
\notag
$$
Similarly, $\eta_0 (\eta_0^{-1} \eta )^{{1}/{k}} \leqslant Q^{1-{1}/{k}}$. Therefore, the final bound for $W_1$ is as follows:
$$
\begin{equation*}
\begin{aligned} \, |W_1| &\leqslant PQ \cdot 4^{1/{s}+{1}/{k}} k^{{1}/({2s})} s^{1/({2k})} \biggl( \biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac {Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{{1}/({2ks})} \\ &\leqslant PQ \cdot 4 k^{1/({2s})} s^{1/({2k})} \biggl( \biggl( \frac{\sqrt{m}}{P^k}+\frac {P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{1/({2ks})}. \end{aligned}
\end{equation*}
\notag
$$
In the remaining cases, the validity of the desired equation is established similarly. This completes the proof of the corollary. We also need the following lemmas. Lemma 4. Let $H_0\,{<}\,H\,{\leqslant}\,\sqrt[3]{x}$ and put
$$
\begin{equation*}
F(x;H)=\sum_{\substack{\nu \leqslant x\\ \nu=c^2 u,\, c>H}} f(\nu).
\end{equation*}
\notag
$$
Then $F(x;H) \ll F(x) H^{-1/2} $. This is Lemma 1 in [9]. Lemma 5. Let $x>x_0$ and put
$$
\begin{equation*}
N(x)=\sum_{\substack{\nu\leqslant x\\ P^+(\nu) \leqslant R}} f(\nu), \quad \textit{where} \quad R= \exp\biggl( \frac{\ln x}{\ln\ln x}\biggr).
\end{equation*}
\notag
$$
Then the following bound holds for $N(x)$:
$$
\begin{equation*}
N(x) \ll F(x)\exp\biggl( -\frac{1}{5} (\ln\ln x) \ln\ln\ln x\biggr).
\end{equation*}
\notag
$$
This is Lemma 2 in [9]. Lemma 6. Let $y_0<y<x$ and let $G(x, y)$ be the sum of the values of $f(\nu)$ over the square-free numbers $\nu\leqslant x$ all of whose prime divisors exceed $y$, that is,
$$
\begin{equation*}
G(x, y)=\sum_{\substack{\nu\leqslant x\\ P^-(\nu)>y}} \mu^2(\nu) f(\nu).
\end{equation*}
\notag
$$
Then the following inequality holds:
$$
\begin{equation*}
G(x,y)\ll \frac{x}{\ln y} \biggl( \frac{\ln x}{\ln y}\biggr)^{\alpha-1}.
\end{equation*}
\notag
$$
Proof. When $f(n)=\mu^2(n)$ and $f(\nu)=\mu(n)$, the desired inequality follows from the classical bound for the number of integers $n \leqslant x$ satisfying the condition $P^{-}(n)> y$ (see, for example, Ch. I, § 4.2, Theorem 2 of [14]). When $f(n)=\tau_r(n)$, the assertion follows from Lemma 6.1 in [15]. Finally, when $f(n)=b(n)$, the desired inequality follows from Theorem 2 in [16]. This completes the proof of the lemma. 3.2. Proof of Theorem 1 The sum $S(x)$ is estimated as follows. The terms corresponding to numbers $\nu$, $1 \leqslant \nu \leqslant x$, having no prime divisors belonging to special intervals are estimated trivially. The remaining terms can be grouped into sums to which the bound in the corollary to Lemma 3 can be applied. Step 1. We write $H=\exp (2\sqrt{\ln x}) $. Let $S_1$ be the part of $S(x)$ over all $\nu$ of the form $\nu=c^2 d$, where $c>H$. By Lemma 4, $S_1 \ll F(x)e^{-\sqrt{\ln x}}$. We note that all the remaining $\nu$ have the form $\nu=c^{2} d$, where $c\leqslant H$, $d$ is square-free and $\mu(d)\neq 0$. Before passing to Step 2, we introduce the following parameters. Let $ R=\exp (\ln x/\ln \ln x)$ and define an integer $l$ by the condition $m^{1/(2l)} \leqslant R<m^{1/(2l-2)}$. Let $n$ satisfy the condition $3l \leqslant n \leqslant (1/4)\sqrt{\ln m}$ (the exact value of $n$ will be chosen below), and let $\delta=1/(4n)$. For an integer $k$, $l \leqslant k \leqslant n$, we write
$$
\begin{equation*}
X_{k}=m^{(1-\delta)/(2k) }, \qquad Y_{k}=m^{(1+\delta)/(2k) }.
\end{equation*}
\notag
$$
We note that $X_{k-1}>2Y_k$ for all $k$ under consideration. Indeed,
$$
\begin{equation*}
\begin{aligned} \, \frac{X_{k-1}}{Y_k} &=m^{(1-\delta)/(2k-2)-(1+\delta)/(2k)}= m^{(1-(2k-1)\delta)/(2k(k-1))} \\ &> m^{(1-2k\delta)/(2k^2)}\geqslant m^{(1-2n\delta)/(2n^2)}=m^{1/(4n^2)}, \end{aligned}
\end{equation*}
\notag
$$
and it suffices to prove that $2^{4n^2}<m$. However, $2^{4n^2} \leqslant 2^{\ln m/4}<m^{7/40}<m$ since $n \leqslant (1/4) \sqrt{\ln m}$. Step 2. We denote by $S_2$ the sum of the remaining terms $S(x)$ that correspond to numbers $\nu$ all of whose prime divisors do not exceed $m^{1/(2l)}$. By the choice of $l$ and according to Lemma 5, we have the bound $S_2 \ll F(x) \exp (-(1/5)(\ln \ln x ) \ln \ln \ln x)$. We note that all the remaining $\nu$ have at least one prime divisor $q$ such that $m^{1/(2s)}<q \leqslant m^{1/(2s-2)}$, where $s \leqslant l$, and denote by $J$ the set of all primes in the union of the intervals $m^{1/(2s)}<q \leqslant m^{1/(2s-2)}$, where $s \leqslant l$. Step 3. We denote by $I$ the set of primes in the union of the intervals $(Y_k, X_{k-1}]$, $l<k\leqslant n$, and denote by $S_3$ the sum of the remaining terms of $S(x)$ that correspond to numbers $\nu$ having no prime divisors in $I$. Let $M=m^{1/(2l)}$, $Y=Y_n$ and $X=X_l$, and denote by $K$ the set of primes in the union of the intervals $(1,Y]$, $(X_k, Y_k]$, where $ l<k< n$, $(X, M]$. Noting that $Y>H$, we can conclude that $\nu$ has the form $\nu=c^2 u v$, where $1\leqslant c \leqslant H$, $\mu(uv)\neq 0$, and all the prime divisors of $v$ belong to $J$ and either $u= 1$ or all the prime divisors of $u$ belong to $K$. We estimate $S_3$ for each of the functions $f(\nu)$ separately. 1) Case $f(\nu)=\mu(n)$ or $f(\nu)=\mu^2(\nu)$. Since $f(\nu) \neq 0 $ when only $c=1$, we have
$$
\begin{equation*}
\begin{aligned} \, |S_3| &\leqslant \sum_{c^2uv\leqslant x} \mu^2(c^2uv) \leqslant \sum_{u\leqslant x/M} \mu^2(u) \sum_{v \leqslant x/u} \mu^2(v) \\ &=\sum_{u\leqslant x / M}\sum_{M \leqslant v \leqslant x/u} 1= \sum_{u\leqslant x/M} G\biggl(\frac{x}{u}; M\biggr), \end{aligned}
\end{equation*}
\notag
$$
where $u$ and $v$ range over the sets indicated above. Thus, using Lemma 6, we obtain
$$
\begin{equation*}
|S_3| \ll \sum_{u \leqslant x/M} \frac{x}{u} \frac{1}{\ln M} \ll \frac{x}{\ln M} \sum_{u \leqslant x} \frac{1}{u} \ll \frac{x}{\ln M} \prod_{p \in K} \biggl(1+\frac{1}{p}\biggr) \ll \frac{x e^{\sigma_1}}{\ln M},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\sigma_1=\sum_{p \in K} \frac{1}{p}=\sum_{p \leqslant Y} \frac{1}{p}+\sum_{l<k<n}\, \sum_{p \in (X_k, Y_k]} \frac{1}{p} +\sum_{X<p\leqslant M}\frac{1}{p}.
\end{equation*}
\notag
$$
Since
$$
\begin{equation*}
\begin{aligned} \, \sum_{X_k<p \leqslant Y_k} \frac{1}{p} &=\ln\ln Y_k-\ln\ln X_k +O\biggl(\frac{1}{\ln X_k}\biggr) \\ &=\ln \ln m^{(1+\delta)/(2k)}-\ln \ln m^{(1-\delta)/(2k)}+O\biggl( \frac{k}{\ln m}\biggr) \\ &=\ln (1+\delta)-\ln (1-\delta)+O \biggl( \frac{k}{\ln m}\biggr)=2 \delta+O (\delta^3)+O \biggl( \frac{k}{\ln m}\biggr) \\ &=\frac{1}{2n}+O\biggl( \frac{1}{n^3}\biggr)+O \biggl( \frac {k}{\ln m}\biggr), \end{aligned}
\end{equation*}
\notag
$$
it follows that
$$
\begin{equation*}
\sum_{k=l+1}^{n-1}\biggl( \sum_{X_k<p \leqslant Y_k} \frac{1}{p}\biggr) =\frac{n-l-1}{2n}+ O\biggl(\frac{1}{l^2}\biggr)+O \biggl(\frac{n^2}{\ln m}\Big )=O(1).
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\sigma_1=(\ln\ln Y+ \ln\ln M -\ln\ln X)+O(1).
\end{equation*}
\notag
$$
We finally obtain
$$
\begin{equation*}
|S_3| \ll \frac{x}{\ln M} \frac{\ln Y}{\ln X} \ln M \ll x \frac{\ln Y}{\ln X} \ll x \frac{(\ln m)/n}{(\ln m)/l} \ll x \frac{l}{n} \ll F(x) \biggl(\frac{l}{n}\biggr)^\alpha.
\end{equation*}
\notag
$$
2) Case $f(\nu)=\tau_r(\nu)$. Since $ \tau_r(gh) \leqslant \tau_r(g) \tau_r(h)$ for every $g$ and $h$, we have
$$
\begin{equation*}
\begin{aligned} \, |S_3| &\leqslant \sum_{c^2uv\leqslant x} \tau_r(c^2) \tau_r(u) \tau_r(v) \leqslant \sum_{c \leqslant H} \tau_r(c^2) \sum_{u \leqslant x(c^2M)^{-1}} \tau_r(u) \sum_{M \leqslant v \leqslant x(c^2u)^{-1}} \tau_r(v) \\ &=\sum_{c \leqslant H} \tau_r(c^2) \sum_{u \leqslant x(c^2M)^{-1}} \tau_r(u) G\biggl( \frac{x}{c^2 u}; M\biggr). \end{aligned}
\end{equation*}
\notag
$$
Using Lemma 6, we obtain
$$
\begin{equation*}
\begin{aligned} \, |S_3| &\ll \sum_{c \leqslant H} \tau_r(c^2) \sum_{u \leqslant x(c^2M)^{-1}} \tau_r(u) \frac{x}{c^2u}\frac{1}{(\ln M)^r}\biggl(\ln \frac{x}{c^2 u }\biggr)^{r-1} \\ &\ll \frac{x (\ln x)^{r-1}}{(\ln M)^r} \sum_{c \leqslant H} \frac{\tau_r(c^2)}{c^2} \sum_{u \leqslant x(c^2M)^{-1}} \frac{\tau_r(u)}{u} \ll \frac{x (\ln x)^{r-1}}{(\ln M)^r} \sum_{c =1}^{+\infty} \frac{\tau_r(c^2)}{c^2} \sum_{u \leqslant x} \frac{\tau_r(u)}{u} \\ &\ll \frac{x (\ln x)^{r-1}}{(\ln M)^r} \prod_{p \in K} \biggl( 1+\frac{r}{p}\biggr) \ll \frac{x (\ln x)^{r-1}}{(\ln M)^r} e^{\sigma_2}, \end{aligned}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\sigma_2=r \sum_{p\in K} \frac{1}{p}=r(\ln\ln Y+\ln\ln M-\ln\ln X)+O(1).
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
|S_3| \ll \frac{x (\ln x)^{r-1}}{(\ln M)^r} \biggl( \frac{\ln Y}{\ln X}\biggr)^r (\ln M )^r \ll x (\ln x)^{r-1} \biggl(\frac{l}{n} \biggr)^r \ll F(x) \biggl(\frac{l}{n} \biggr)^\alpha.
\end{equation*}
\notag
$$
3) Case $f(\nu)=b(\nu)$. Since all the prime divisors of $v$ lie in $J$, it follows that $(v, c^2u)=1$ and $b(c^2uv)=b(c^2u)b(v)$. We claim that $b(c^2 u)=b(c^2)b(u)=b(u)$. If $(c, u)=1$, then this is obvious. Now let $(c,u)>1$. Since $u$ is square-free, it follows that $(c, u)=q_1\cdots q_k$, where the $q_i$ are distinct primes. Then $c=q_1^{\alpha_1}\cdots q_k^{\alpha_k}c_1$ and $u=q_1\cdots q_k u_1$, where $(c_1, u_1)=1$. We have
$$
\begin{equation*}
b(c^2 u)=b(q_1^{2\alpha_1+1}\cdots q_k^{2\alpha_k+1})b(c_1^2)b(u_1) =b(q_1\cdots q_k)b(u_1)=b(u).
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
|S_3| \leqslant \sum_{c \leqslant H }\sum_{u \leqslant x (c^2 M)^{-1}} b(u) \sum_ {M \leqslant v \leqslant(c^2 u)^{-1}} b(v) \leqslant \sum_{c \leqslant H } \sum_{u \leqslant x (c^2 M)^{-1}} b(u) G\biggl( \frac{x}{c^2 u}; M\biggr).
\end{equation*}
\notag
$$
Using Lemma 6, we obtain
$$
\begin{equation*}
\begin{aligned} \, |S_3| &\ll \sum_{c \leqslant H } \sum_{u \leqslant x (c^2 M)^{-1}} b(u) \frac{x}{c^2 u } \frac{1}{\sqrt{\ln(x/(c^2u))}} \frac{1}{\sqrt{\ln M}} \\ &\ll \frac{x}{\ln M} \sum_{c \leqslant H }\frac{1}{c^2} \sum_{u \leqslant x (c^2 M)^{-1}} \frac{b(u)}{u} \ll \frac{x}{\ln M} \sum_{u \leqslant x} \frac{b(u)}{u}. \end{aligned}
\end{equation*}
\notag
$$
Since $u$ is square-free, it follows that $b(u)=1$ if and only if all the prime divisors of $u$ are congruent to 1 modulo 4. Therefore,
$$
\begin{equation*}
\sum_{u \leqslant x} \frac{b(u)}{u} \leqslant \prod_{\substack{p \in K \\ p \equiv 1 \ (\operatorname{mod}4)}} \biggl( 1+\frac{1}{p}\biggr) \leqslant e^{\sigma_3},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\begin{aligned} \, \sigma_3 &=\sum_{\substack{p \in K\\ p \equiv 1 \ (\operatorname{mod}4)}} \frac{1}{p} =\sum_{\substack{p \leqslant Y\\ p \equiv 1 \ (\operatorname{mod}4)}} \frac{1}{p}+\sum_{l<k<n} \sum_{\substack{p \in (X_k, Y_k]\\ p \equiv 1 \ (\operatorname{mod}4)}} \frac{1}{p} +\sum_{\substack{X<p\leqslant M \\ p \equiv 1 \ (\operatorname{mod}4)}}\frac {1}{p} \\ &=\frac{1}{2} (\ln\ln Y+\ln\ln M -\ln\ln X)+O(1). \end{aligned}
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
\begin{aligned} \, |S_3| &\ll \frac{x}{\ln M} \sqrt{\frac{\ln Y}{\ln X}} \sqrt{\ln M}\ll \frac{x}{\sqrt{\ln M}} \sqrt{\frac{\ln Y}{\ln X}} \ll \frac{x}{\sqrt{\ln x}} \sqrt{\ln \ln x} \sqrt {\frac{l}{n}} \\ &\ll F(x) \biggl(\frac{l}{n} \biggr)^ \alpha (\ln\ln m)^\beta. \end{aligned}
\end{equation*}
\notag
$$
Hence the following bound holds for all the functions $f(\nu)$ under consideration:
$$
\begin{equation*}
|S_3| \ll F(x) \biggl( \frac{l}{n}\biggr)^{\alpha} (\ln \ln m)^\beta.
\end{equation*}
\notag
$$
The sum of the remaining terms is denoted by $S_4$. All the $\nu$ corresponding to these terms have at least one prime divisor $p$ in $I$ and at least one prime divisor $q$ in $J$. Thus, all such $\nu$ have the form $\nu=c^2uvw$, where $1\leqslant c \leqslant H$, $\mu(uvw)\,{\neq}\,0$, all the prime divisors of $u$ belong to $I$, all the prime divisors of $v$ belong to $J$, and $w$, in contrast, has no prime divisors in $I$ and $J$. Let us group together the terms of $S_4$ for which $u$ and $v$ consist of $\mu$ and $\lambda$ factors, respectively:
$$
\begin{equation*}
S_4=\sum_{\mu\geqslant 1} \sum_{\lambda \geqslant 1} S_4(\mu, \lambda).
\end{equation*}
\notag
$$
We write $\Phi(n)=e_m(a \overline{n})$. Then, since $f(c^2 u v w)=f(c^2w)f(u)f(v)$, we obtain
$$
\begin{equation*}
\begin{aligned} \, |S_4(\mu, \lambda)| &=\biggl| \sum_{c^2uvw \leqslant x}f(c^2uvw) \Phi (c^2uvw) \biggr| \\ &\leqslant \sum_{c \leqslant H} f(c^2) \sum_{w}f(w) \biggl| \sum_{uv \leqslant x(c^2w)^{-1}}f(u)f(v) \Phi(c^2uvw)\biggr|, \end{aligned}
\end{equation*}
\notag
$$
where $w$ ranges over an increasing sequence of numbers that have no prime divisors in $I$ or $J$ and $w \leqslant x(c^2 Y^\mu M^\lambda )^{-1}$. Let $c$ and $w$ be fixed. We compare the inner sum $S_4(\mu, \lambda; w )$ over $u$ and $v$ with the sum
$$
\begin{equation*}
S' (\mu, \lambda;w)=\frac{1}{\mu\lambda} \sum_{u_1,v_1}\sum_{p,q}{f(u_1)f(p)f(v_1)f(q) \Phi(c^2u_{1}pv_{1}qw)},
\end{equation*}
\notag
$$
where $u_1$ and $v_1$ range independently over increasing sequences of numbers that are products of $\mu-1$ and $\lambda-1$ different prime factors in $I$ and $J$, respectively, while $p$ and $q$ take values in the primes in $I$ and $J$, and the condition $u_{1}v_{1}pq \leqslant x(c^2w)^{-1}$ is satisfied. The numbers $u$ and $v$ corresponding to the terms in $S_4(\mu, \lambda; w)$ are represented in the form $u= u_{1}p$ and $v=v_{1}q$, where $(u_{1},p)=1$ and $(v_{1},q)=1$, in $\mu$ and $\lambda$ ways, respectively. Therefore, any term in this sum occurs in $S'(\mu, \lambda; w)$ with coefficient 1. Moreover, $S'(\mu, \lambda; w)$ contains summands for which at least one of the conditions $(u_{1},p)=1$ and $(v_{1},q)=1$ is violated. Denoting their contribution by $S''(\mu, \lambda; w)$ and writing $u_{1}=u_{2}p$ and $v_1=v_{2}q$, we obtain
$$
\begin{equation*}
\begin{aligned} \, &| S'' (\mu, \lambda; w)| \leqslant \frac{1}{\mu\lambda} \biggl(\sum_{p^{2}qu_{2}v_{1} \leqslant x(c^2w)^{-1}}f(pu_{2})f(p)f(v_1)f(q) \\ &\quad +\sum_{pq^{2}u_{1}v_{2} \leqslant x(c^2w)^{-1}}\!\! f(u_1)f(p)f(v_{2}q)f(q) \,{+}\!\!\sum_{p^{2}q^{2}u_{2}v_{2} \leqslant x(c^2w)^{-1}} \!\! f(u_2p)f(p)f(v_{2}q)f(q) \biggr) \\ &\enspace = \frac{1}{\mu\lambda} (S_1'' +S_2''+S_3''). \end{aligned}
\end{equation*}
\notag
$$
Let us estimate the sum $S_1''$. Since $pu_{2}$ is square-free, it follows that
$$
\begin{equation*}
S_1''=\sum_{p^2qu_{2}v_{1} \leqslant x(c^2w)^{-1}} f(pu_2) f(p)f(v_1)f(q) =\sum_{p^2qu_{2}v_{1} \leqslant x(c^2w)^{-1}}f^2(p)f(v_1 u_2 q).
\end{equation*}
\notag
$$
We write $d=v_1 u_2 q$. The number of representations of $d$ in this form does not exceed $\lambda$. The following inequality holds:
$$
\begin{equation*}
S_1'' \leqslant \lambda \sum_{p \in I} f^2(p) \sum_{p^2d \leqslant x(c^2w)^{-1}} f(d) \ll \ln x \sum_{p \in I} f^2(p) F\biggl( \frac{x}{p^2c^2w} \biggr).
\end{equation*}
\notag
$$
Since $F(x/t) \ll (F(x)/t)\ln x$ when $1\leqslant t \leqslant x/2$, we obtain the bound
$$
\begin{equation*}
S_1'' \ll \frac{F(x)}{c^2w} ( \ln x)^2 \sum_{p \in I} {\frac{f^2(p)}{p^2}} \ll \frac{F(x)}{c^2w} ( \ln x)^2 \sum_{p \geqslant Y} {\frac{1}{p^2}} \ll \frac{F(x)}{c^2w} \frac{(\ln x)^2}{Y}.
\end{equation*}
\notag
$$
Similar bounds hold for $S_2''$ and $S_3''$. Thus,
$$
\begin{equation*}
\begin{gathered} \, |S''(\mu, \lambda; w)| \ll \frac{1}{\mu\lambda} \frac{F(x)}{c^2w} \frac{(\ln x)^2}{Y}, \\ | S_4(\mu, \lambda;w)| \ll |S'(\mu, \lambda; w)|+|S''(\mu, \lambda; w)| \ll |S'(\mu, \lambda; w)|+\frac{1}{\mu\lambda} \frac{F(x)}{c^2w} \frac{(\ln x)^2}{Y}, \end{gathered}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
S'(\mu, \lambda; w)=\frac{1}{\mu\lambda}\sum_{u_1}\sum_{v_1} f(u_1)f(v_1) \widetilde{S},
\end{equation*}
\notag
$$
and for fixed $\mu, \lambda, w, u_1, v_1$ we have
$$
\begin{equation*}
\widetilde{S}=\sum_{pq \leqslant Z} {f(p)f(q)\Phi(c^2 u_1 v_1 w pq)}, \qquad Z=\biggl[ \frac{x}{c^2 u_1 v_1 w} \biggr].
\end{equation*}
\notag
$$
Let us represent $\widetilde{S}$ in the form
$$
\begin{equation*}
\widetilde{S}=\sum_{pq\leqslant Z} f(p)f(q)e_m(a_1\overline{p}\, \overline{q}),
\end{equation*}
\notag
$$
where $a_1 \equiv a(\overline{c^2 u_1 v_1}) \pmod m$. Further, we split the domains over which $p$ and $q$ vary into intervals of the form $P<p \leqslant P_1 \leqslant 2P$ and $Q<q \leqslant Q_1 \leqslant 2Q$ and choose the quantities $P$, $P_1$, $Q$, $Q_1$ in such a way that every interval $(P, P_1]$ is entirely contained in some interval $(Y_k, X_{k-1}]$, $l<k\leqslant n$, and every interval $(Q, Q_1]$ is entirely contained in some interval $(m^{1/(2s)}, m^{1/(2s-2)}]$, $s \leqslant l$. Thus, $\widetilde{S}$ splits into at most $(\ln m)^2$ sums of the form
$$
\begin{equation*}
S(P, Q)=\sum_{P <p\leqslant P_1} \sum_{\substack{Q< q\leqslant Q_1\\ pq \leqslant Z}} f(p)f(q)e_m(a_1 \overline{p}\, \overline{q}).
\end{equation*}
\notag
$$
We consider one of these sums. We will get rid of the condition $pq \leqslant Z$. Since $p \leqslant Z/Q$, it follows that $ P<p \leqslant P_2$, where $P_2=\min (P_1, Z/Q)$. Hence $Q< q\leqslant Q_2$, where $Q_2=\min (Q_1, Z/p)$. We transform the sum to make the upper limit of $q$ independent of $p$:
$$
\begin{equation*}
\begin{aligned} \, S(P, Q) &=\sum_{P <p\leqslant P_2} \sum_{Q< q\leqslant Q_{1}} \biggl( \frac{1}{m} \sum_{|d|<m/2}\, \sum_{Q< \xi \leqslant Q_2} e_m\bigl( d(q-\xi)\bigr) \biggr) f(p)f(q)e_m(a_1\overline{p}\, \overline{q}) \\ &=\sum_{|d|<m/2} {\frac{1}{|d|+1}} \sum_{P<p\leqslant P_2} \frac{|d|+1}{m} \biggl(\sum_{Q<\xi \leqslant Q_2}{e_m(-d\xi)}\biggr) \\ &\qquad\times\sum_{Q<q\leqslant Q_1} e_m(dq)f(p)f(q)e_m(a_1 \overline{p}\, \overline{q}) =\sum_{|d|<m/2}{\frac{T(d)}{|d|+1}}, \end{aligned}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\begin{gathered} \, T(d)=\sum_{P<p\leqslant P_2} \sum_{Q<q\leqslant Q_1} {\alpha(p) \beta(q) e_m(a_1 \overline{p}\, \overline{q})}, \\ \alpha(p)=\frac{|d|+1}{m} \biggl(\sum_{Q<\xi \leqslant Q_2}{e_m(-d\xi)} \biggr) f(p), \qquad \beta(q)=e_m(dq) f(q). \end{gathered}
\end{equation*}
\notag
$$
Since $|\alpha(p)| \leqslant |f(p)|$, $|\beta(q)| \leqslant |f(q)|$, it follows that $|T(d)| \ll PQ\Delta_1$ by the corollary to Lemma 3, where
$$
\begin{equation*}
\Delta_1=k^{1/(2s)} s^{1/(2k)} \biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr)^{1/(2ks)} \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}}\biggr)^{1/(2ks)}.
\end{equation*}
\notag
$$
It follows from the conditions on $P$ and $Q$ that
$$
\begin{equation*}
\frac{\sqrt{m}}{P^k} \leqslant \frac{\sqrt{m}}{m^{(1+\delta)/2}}= m^{-\delta/2} , \qquad \frac{P^{k-1}}{\sqrt{m}} \leqslant \frac{m^{(1-\delta)/2}}{\sqrt{m}} \leqslant m^{-\delta/2} , \qquad \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \leqslant 2.
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
\begin{aligned} \, \Delta_1 &\ll k^{1/(2s)}s^{1/(2k)} m^{-{\delta}/{(4 ks)}} \ll l^{1/(2k)} n^{1/(2s)}m^{-1/(16ln^2)} \ll l^{1/(2l)} n^{1/ 2} m^{-1/(16ln^2)} \\ &\ll \sqrt{n}\, m^{-1/(16ln^2)}\ll {(\ln m)}^{1/4}m^{-1/(16ln^2)}=\Delta_2 {(\ln m)}^{1/4}. \end{aligned}
\end{equation*}
\notag
$$
Therefore, $ T(d) \ll PQ\Delta_2 (\ln m)^{1/4}$, and hence
$$
\begin{equation*}
S (P, Q) \ll PQ\Delta_2 (\ln m)^{5/4} \ll Z \Delta_2 (\ln m)^{5/4}, \qquad \widetilde{S}\ll Z \Delta_2 (\ln m)^{13/4}.
\end{equation*}
\notag
$$
We proceed to estimate $S_4$. We obtain
$$
\begin{equation*}
\begin{aligned} \, S_4(\mu, \lambda; w) &\ll \frac{1}{\mu \lambda} \sum_{u_1} \sum_{v_1} f(u_1)f(v_1) \frac{x\Delta_2 (\ln m)^{13/4}}{c^2 u_{1} v_{1}w}+\frac{1}{\mu\lambda} \frac{F(x)}{c^2w} \frac{(\ln x)^2}{Y} \\ &\ll \frac{x\Delta_2}{\mu \lambda} \frac{(\ln m)^{13/4}}{c^2w} \sum_{u_1} \frac{f(u_1)}{u_1} \sum_{v_1} \frac{f(v_1)}{v_1}+ \frac{1}{\mu\lambda} \frac{F(x)}{c^2w} \frac{(\ln x)^2}{Y}. \end{aligned}
\end{equation*}
\notag
$$
Further,
$$
\begin{equation*}
\begin{aligned} \, S_4(\mu, \lambda) &\ll \frac{x\Delta_2 (\ln m)^{13/4}}{\mu \lambda} \sum_{c\leqslant H} \frac{f(c^2)}{c^2} \sum_{w} \frac{f(w)}{w} \sum_{u_1}\frac{f(u_1)}{u_1} \sum_{v_1}\frac{f(v_1)}{v_1} \\ &\qquad+ \frac{1}{\mu\lambda} \frac{F(x)(\ln x)^2}{Y}\sum_{c\leqslant H} \frac{1}{c^2} \sum_{w}\frac{1}{w}. \end{aligned}
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
\begin{aligned} \, S_4 &\ll \sum_{\mu, \lambda \geqslant 1} {|S(\mu, \lambda)|} \\ &\ll x \Delta_2 (\ln m)^{13/4} \sum_{\mu \geqslant 1} \sum_{\lambda \geqslant 1} \frac{1}{\mu \lambda} \sum_{c\leqslant H} \frac{f(c^2)}{c^2} \sum_{w\leqslant x}\frac{f(w)}{w} \sum_{u_1 \leqslant x}\frac{f(u_1)}{u_1} \sum_{v_1 \leqslant x}\frac{f(v_1)}{v_1} \\ &\qquad+ \frac{F(x) (\ln x)^2}{Y} \sum_{\mu \geqslant 1} \sum_{\lambda \geqslant 1} \frac{1}{\mu \lambda}\sum_{c\leqslant H} \frac{1}{c^2} \sum_{w\leqslant x} \frac{1}{w} \ll x \Delta_2 (\ln m)^{13/4} D+\frac{F(x)}{H} (\ln x)^5, \end{aligned}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
D =\sum_{\mu \geqslant 1} \sum_{\lambda \geqslant 1} \frac{1}{\mu \lambda} \sum_{c\leqslant H} \frac{f(c^2)}{c^2} \sum_{w\leqslant x} \frac{f(w)}{w} \sum_{u_1 \leqslant x} \frac{f(u_1)}{u_1} \sum_{v_1 \leqslant x} \frac{f(v_1)}{v_1}.
\end{equation*}
\notag
$$
Estimating the sum $D$, we obtain
$$
\begin{equation*}
\begin{aligned} \, D &\ll \biggl( \sum_{c=1}^{+\infty} \frac{f(c^2)}{c^2}\biggr) \biggl( \sum_{w \leqslant x} \frac{f(w)}{w}\biggr) \biggl( \sum_{\mu \geqslant 1} \sum_{u_1} \frac{f(u_1)}{u_1}\biggr) \biggl( \sum_{\lambda \geqslant 1} \sum_{v_1} \frac{f(v_1)}{v_1}\biggr) \\ &\ll \biggl( \sum_{w \leqslant x} \frac{f(w)}{w}\biggr) \sum_{u} \frac{f(u)}{u} \sum_{v} \frac{f(v)}{v}, \end{aligned}
\end{equation*}
\notag
$$
where $u$ and $v$ range over increasing sequences of square-free numbers all of whose prime divisors belong to the sets $I$ and $J$, respectively, and $w$ ranges over square-free numbers having no prime divisors in $I$ and $J$. We also see that
$$
\begin{equation*}
D \ll \!\! \prod_{\substack{p \leqslant x\\ p \notin I,\, p \notin J }}\biggl( 1+ \frac{f(p)}{p}\biggr) \prod_{p \in I}\biggl( 1+ \frac{f(p)}{p}\biggr) \prod_{p \in J}\biggl( 1+ \frac{f(p)}{p}\biggr) \ll \prod_{p \leqslant x}\biggl( 1+ \frac{f(p)}{p}\biggr) \ll (\ln x)^\alpha.
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
S_4 \ll x \Delta_2 (\ln m)^{13/4} (\ln x)^\alpha+\frac{F(x)}{H} (\ln x)^5 \ll F(x) \Delta_2 (\ln m)^{17/4}+\frac{F(x)}{\sqrt{H}},
\end{equation*}
\notag
$$
whence
$$
\begin{equation*}
\begin{aligned} \, S &\ll F(x) \exp \biggl( -\frac{1}{5} (\ln\ln x) \ln\ln\ln x \biggr) \\ &\qquad+ F(x)\biggl(\frac{l}{n}\biggr)^\alpha (\ln\ln x)^\beta+ \frac{F(x)}{\sqrt{H}}+F(x)\Delta_2 (\ln m)^{17/4} \\ &\ll F(x)\biggl( \biggl(\frac{l}{n}\biggr)^\alpha (\ln\ln x)^\beta+(\ln m)^{17/4} m^{-1/(16ln^2)}\biggr). \end{aligned}
\end{equation*}
\notag
$$
Let us now choose $n$ in such a way that
$$
\begin{equation}
m^{1/(16ln^2)} \geqslant (\ln m)^C,
\end{equation}
\tag{3.1}
$$
where $C \geqslant \alpha+5$ is a constant. Noting that
$$
\begin{equation*}
\frac{1}{2}\, \frac{\ln m}{\ln x} \ln\ln x \leqslant l<\frac{1}{2}\, \frac{\ln m}{\ln x} \ln\ln x+ 1<\frac{3}{4}\, \frac{\ln m}{\ln x} \ln\ln m,
\end{equation*}
\notag
$$
we obtain
$$
\begin{equation*}
\begin{gathered} \, \frac{1}{16ln^2}>\frac{1}{16n^2} \, \frac{4 \ln x}{3 \ln m}\, \frac{1}{\ln\ln m} \geqslant \frac{1}{12n^2}\, \frac{\ln x}{(\ln m) (\ln\ln m)}, \\ m^{1/(16ln^2)}> \exp \biggl( \frac{1}{12n^2}\, \frac{\ln x}{\ln\ln m }\biggr). \end{gathered}
\end{equation*}
\notag
$$
Hence, the condition (3.1) is satisfied if $n$ is chosen in such a way that
$$
\begin{equation*}
\frac{1}{12n^2}\, \frac{\ln x}{\ln\ln m } \geqslant C \ln\ln m, \quad \text{that is,} \quad n^2 \leqslant \frac{1}{12C}\, \frac{\ln x}{(\ln\ln m)^2}.
\end{equation*}
\notag
$$
We write
$$
\begin{equation*}
n=\biggl[ \frac{1}{\sqrt{12C}} \, \frac{\sqrt{\ln x}}{\ln\ln m}\biggr].
\end{equation*}
\notag
$$
Since the inequality $ n \leqslant (1/4)\sqrt{\ln m}$ is obvious, we only have to prove that $3l \leqslant n$, to this end it suffices to establish that
$$
\begin{equation*}
\frac{2 \ln m}{\ln x} \ln\ln m<\frac{1}{4\sqrt{C}}\, \frac{\sqrt{\ln x}}{\ln \ln m}
\end{equation*}
\notag
$$
or, equivalently, $(\ln x )^{3/2}>8\sqrt{C} (\ln m) (\ln\ln m)^2$. However, the last inequality follows from the hypotheses of the theorem. Thus,
$$
\begin{equation*}
S(x) \ll F(x) \Delta, \qquad \Delta=\biggl(\frac{\ln m}{(\ln x)^{3/2}} (\ln\ln m)^2 \biggr)^\alpha (\ln\ln m)^\beta.
\end{equation*}
\notag
$$
This completes the proof of Theorem 1. Remark 4. The following bound holds in the case of a fixed $\varepsilon$, $0<\varepsilon \leqslant 1/2$, and $x=m^\varepsilon$:
$$
\begin{equation*}
S(x) \ll_\varepsilon F(x) \Delta, \qquad \Delta=\frac{(\ln\ln m)^{2\alpha+ \beta}}{(\ln m)^{\alpha/2}}.
\end{equation*}
\notag
$$
§ 4. Inhomogeneous short Kloosterman sums with weights4.1. Auxiliary assertions To prove the main theorem in the case of inhomogeneous sums, we need a bound similar to that in Lemma 3. Lemma 7. Let the conditions of Lemma 3 hold. Then the sum
$$
\begin{equation*}
W_2=\sum_{Q<q\leqslant Q_{1}} \, \sum_{P<p\leqslant P_{1}} \xi(p) \eta(q) e_{m}(a\overline{p}\, \overline{q}+bpq)
\end{equation*}
\notag
$$
satisfies the bound $|W_2| \leqslant \xi_0 \eta_0 \Delta$ in which
$$
\begin{equation*}
\begin{aligned} \, \Delta &=(4\xi \sqrt{k})^{1/s} (4\eta \sqrt{s})^{1/k} s^{1/(2ks)} \biggl( \frac{P}{\xi_0}\biggr)^{1/s} \\ &\qquad\times \biggl( \frac{Q}{\eta_0}\biggr)^{1/k} \biggl( Q\biggl( \frac{\sqrt{m}}{P^k}+\frac{P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}} {Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr) \biggr)^{1/(2ks)}. \end{aligned}
\end{equation*}
\notag
$$
Proof. Following [13] and using the notation in Lemma 3 together with the inequalities in Lemma 1, we see that
$$
\begin{equation*}
\begin{aligned} \, |W_2|^s &\leqslant \biggl( \sum_{p} |\xi(p)| \biggl|\sum_{q}{\eta(q) e_{m}(a\overline{p}\, \overline{q}+bpq)} \biggr|\biggr)^s \\ &\leqslant \biggl( \sum_{p} |\xi(p)|\biggr)^{s-1} \sum_{p}|\xi(p)| \biggl| \sum_{q} \eta(q) e_{m}(a\overline{p}\, \overline{q}+bpq)\biggr|^s \\ &= \xi_{0}^{s-1} \sum_{p} |\xi(p)| \biggl| \sum_{q} {\eta(q) e_{m}(a\overline{p}\, \overline{q}+bpq)}\biggr|^s \\ &\leqslant \xi_{0}^{s-1} \xi \sum_{p}\biggl| \sum_{q_1,\dots, q_s} \eta(q_1)\cdots \eta(q_s) e_{m}\bigl(a\overline{p}(\overline{q}_1+\dots+\overline{q}_s)+bp({q_1} +\dots+{q_s})\bigr) \biggr| \\ &= \xi_{0}^{s-1} \xi \sum_{p} \biggl| \sum_{\lambda=1}^{m} \sum_{sQ< \mu \leqslant sQ_1} e_m(a\overline{p}\lambda+bp\mu) A_s(\lambda, \mu) \biggr|, \end{aligned}
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
A_s(\lambda, \mu)=\sum_{\substack{q_1, \dots, q_s\\\overline{q}_1+\dots+ \overline{q}_s \equiv \lambda \ (\operatorname{mod}m) \\ q_1+\dots+q_s \equiv \mu \ (\operatorname{mod}m)}}\eta(q_1)\cdots \eta(q_s).
\end{equation*}
\notag
$$
Let $\theta(p)$ be the argument in the inner sum. Then
$$
\begin{equation*}
\begin{aligned} \, |W_2|^s &\leqslant \xi_{0}^{s-1} \xi \sum_{p} e^{-i\theta(p)} \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1 }} {A_s(\lambda, \mu) e_m(a\overline{p}\lambda+bp\mu)} \\ &= \xi_{0}^{s-1} \xi \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} A_s(\lambda, \mu) \sum_{p}{e^{-i\theta(p)} e_m(a\overline{p}\lambda+bp\mu)}, \end{aligned}
\end{equation*}
\notag
$$
whence
$$
\begin{equation*}
|W_2|^s \leqslant \xi_{0}^{s-1} \xi \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} |A_s(\lambda, \mu)| \biggl| \sum_{p} e^{-i\theta(p)} e_m(a\overline{p}\lambda+bp\mu)\biggr|.
\end{equation*}
\notag
$$
Taking this inequality to the power $k$ and applying Lemma 1,
$$
\begin{equation*}
\begin{aligned} \, |W_2|^{ks} &\leqslant \xi_{0}^{k(s-1)} \xi^{k} \Biggl( \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ< \mu \leqslant sQ_1}} |A_s(\lambda, \mu)|\Biggr)^{k-1} \\ &\qquad\times \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} |A_s(\lambda, \mu)|\biggl| \sum_{p} {e^{-i\theta(p)} e_m(a\overline{p}\lambda+bp\mu)}\biggr|^k \\ &\leqslant \xi_{0}^{k(s-1)} \xi^{k} \eta_0^{s(k-1)} \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} |A_s(\lambda, \mu)| \biggl| \sum_{p} {e^{-i\theta(p)} e_m(a\overline{p}\lambda+ bp\mu)}\biggr|^k. \end{aligned}
\end{equation*}
\notag
$$
Squaring and using Lemma 1, we obtain
$$
\begin{equation*}
|W_2|^{2ks} \leqslant \xi_0^{2k(s-1)} \xi^{2k} \eta_0^{2s(k-1)} BC,
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
B=\sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}}|A_s(\lambda, \mu)|^2, \qquad C=\sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} \biggl| \sum_{p} {e^{-i\theta(p)} e_m(a\overline{p}\lambda+bp\mu)}\biggr|^{2k}.
\end{equation*}
\notag
$$
Estimating the sum $B$, we see that
$$
\begin{equation*}
\begin{aligned} \, &\sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}}|A_s(\lambda, \mu)|^2 = \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} \Biggl|\sum_{\substack{q_1, \dots, q_s\\ \overline{q}_1+\dots+ \overline{q}_s \equiv \lambda \ (\operatorname{mod}m) \\ q_1+\dots+q_s \equiv \mu \ (\operatorname{mod}m)}}{\eta(q_1)\cdots \eta(q_s)}\Biggr|^2 \\ &\ \leqslant \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} \sum_{\substack{q_1, \dots, q_{2s}\\ \overline{q}_1+\dots+ \overline{q}_s \equiv \lambda \equiv \overline{q}_{s+1}+\dots+ \overline{q}_{2s} \ (\operatorname{mod}m) \\ q_1+\dots+q_s \equiv \mu \equiv q_{s+1}+\dots+q_{2s} \ (\operatorname{mod}m)}}|\eta(q_1)|\cdots |\eta(q_{2s})| \\ &\ \leqslant \eta^{2s} \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} \sum_{\substack{q_1,\dots, q_{2s}\\ \overline{q}_1+\dots+ \overline{q}_s \equiv \lambda \equiv \overline{q}_{s+1}+\dots+ \overline{q}_{2s} \ (\operatorname{mod}m) \\ q_1+\dots+q_s \equiv \mu \equiv q_{s+1}+\dots+q_{2s} \ (\operatorname{mod}m)}} 1 \\ &\ = \eta^{2s} \sum_{\substack{q_1, \dots, q_{2s}\\ \overline{q}_1+\dots+ \overline{q}_s \equiv \overline{q}_{s+1}+\dots+ \overline{q}_{2s} \ (\operatorname{mod}m) \\ q_1+\dots+q_s \equiv q_{s+1}+\dots+ q_{2s} \ (\operatorname{mod}m)}}\!\!\!\!\!1\leqslant \eta^{2s} \sum_{\substack{q_1, \dots, q_{2s}\\ \overline{q}_1+\dots+ \overline{q}_s \equiv \overline{q}_{s+1}+\dots+ \overline{q}_{2s} \ (\operatorname{mod}m)}}\!\!\!\!\!1 \\ &\ =\eta^{2s} I_s(Q). \end{aligned}
\end{equation*}
\notag
$$
Estimating the sum $C$, we obtain
$$
\begin{equation*}
\begin{aligned} \, C &= \!\!\sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} \!\!\sum_{p_1,\dots, p_{2k}} \!e^{-i(\theta(p_1)+\dots-\theta(p_{2k}))} e_m\bigl(a\lambda(\overline{p}_1+\dots- \overline{p}_{2k})\,{+}\,b\mu (p_1+\dots -p_{2k})\bigr) \\ &= \!\!\sum_{p_1,\dots, p_{2k}} e^{-i(\theta(p_1)+\dots-\theta(p_{2k}))} \!\!\!\sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} \!e_m\bigl(a\lambda(\overline{p}_1+\dots- \overline{p}_{2k})\,{+}\,b\mu (p_1+\dots -p_{2k})\bigr) \\ &\leqslant \sum_{p_1,\dots, p_{2k}} \Biggl| \sum_{\substack{1\leqslant \lambda \leqslant m \\ sQ<\mu \leqslant sQ_1}} e_m\bigl(a\lambda(\overline{p}_1+\dots-\overline{p}_{2k})+b\mu (p_1+\dots -p_{2k})\bigr)\Biggr| \\ &=\sum_{\sigma=1}^{m} \sum_{|\tau| \leqslant kP} j_k(\sigma, \tau) \biggl| \sum_{sQ< \mu \leqslant sQ_1} \sum_{\lambda=1}^{m} e_m(a\lambda\sigma+b\mu \tau)\biggr|, \end{aligned}
\end{equation*}
\notag
$$
where $j_k(\sigma, \tau)$ is the number of solutions of the system under the given conditions on the $p_j$, $j= 1,\dots, 2k$,
$$
\begin{equation*}
\begin{cases} \overline{p}_1+\dots+\overline{p}_k \equiv \overline{p}_{k+1}+\dots+\overline{p}_{2k}+ \sigma \pmod{m}, \\ p_1+\dots +p_k \equiv p_{k+1}+\dots +p_{2k}+\tau \pmod{m}. \\ \end{cases}
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
\begin{aligned} \, C &\leqslant \sum_{\sigma=1}^{m} \sum_{|\tau| \leqslant kP} j_k(\sigma, \tau) \sum_{sQ< \mu \leqslant sQ_1} \biggl| \sum_{\lambda=1}^{m} e_m(a\lambda\sigma)\biggr| \\ &\leqslant sQ \sum_{\sigma=1}^{m} \biggl(\sum_{|\tau| \leqslant kP} j_k(\sigma, \tau)\biggr) \biggl| \sum_{\lambda=1}^{m} e_m(a\lambda\sigma) \biggr| =sQm \sum_{|\tau| \leqslant kP} j_k(0, \tau) \leqslant smQ I_k(P). \end{aligned}
\end{equation*}
\notag
$$
We thus obtain
$$
\begin{equation*}
|W_2|^{2ks} \leqslant \xi_0^{2k(s-1)} \xi^{2k} \eta_0^{2s(k-1)} \eta^{2s} smQ I_s(Q)I_k(P).
\end{equation*}
\notag
$$
Applying Lemma 2 to $I_k(P)$ and $I_s(Q)$, we arrive at the desired assertion. This completes the proof Lemma 7. Corollary 3. When $\xi(\nu)=\eta(\nu)=f(\nu)$, the sum $W_2$ satisfies the bound $|W_2| \ll PQ \Delta_1$, where
$$
\begin{equation*}
\Delta_1=k^{1/(2s)} s^ {1/(2k)}\biggl( Q \biggl( \frac{\sqrt{m}}{P^k}+\frac {P^{k-1}}{\sqrt{m}} \biggr) \biggl( \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \biggr)\biggr)^{1/(2ks)}.
\end{equation*}
\notag
$$
4.2. Proof of Theorem 2 We follow the same scheme of reasoning as in the proof of Theorem 1. Step 1. We write $H=\exp(2\sqrt{\ln x})$. Let $S_1$ be the part of the sum $S(x)$ over those $\nu$ of the form $\nu=c^2d$, $c>H$. By Lemma 4, $S_1 \ll F(x)e^{-\sqrt{\ln x}}$. The other $\nu$ have the form $\nu=c^2d$, where $c \leqslant H$, $d$ is square-free and $\mu(d) \neq 0$. Step 2. We write $R=\exp(\ln x/\ln\ln x)$ and define the integer $l_1$ by the condition $m^{1/(2l_1)} \leqslant R<m^{1/(2l_1-2)}$. We denote by $S_2$ the sum of the remaining terms corresponding to numbers $\nu$ all of whose prime divisors do not exceed $M= m^{1/(2l_1)}$. Then by Lemma 5,
$$
\begin{equation*}
S_2 \ll F(x)\exp\biggl(-\frac{1}{5} (\ln\ln x) \ln{\ln\ln x} \biggr).
\end{equation*}
\notag
$$
All the remaining $\nu$ have at least one prime divisor exceeding $M$. Before passing to Step 3, we introduce the following parameters. Let $n_1$ satisfy the condition $3l_1 \leqslant n_1 \leqslant (1/60)\sqrt{\ln m}$ (exact value will be chosen below) and put $\delta=1/(4n_1)$. For an integer $k$, $l_1 \leqslant k \leqslant n_1$, we write
$$
\begin{equation*}
X_k=m^{(1-\delta)/({2k})}, \qquad Y_k=m^{(1+\delta)/({2k})}.
\end{equation*}
\notag
$$
Just as was done above, we can readily see that $X_{k-1}>2Y_k$ for all $k$ under consideration. Let $l_2$ and $n_2$ satisfy the inequalities $l_2 \geqslant 5n_1$, $n_2 \geqslant 3 l_2$ and $n_2 \leqslant (1/4) \sqrt {\ln m}$ (we will specify the exact values of $l_2$ and $n_2$ below). We write
$$
\begin{equation*}
U=m^{1/({2n_2})}, \qquad V=m^{1/({2l_2})}.
\end{equation*}
\notag
$$
We denote by $J$ the set of primes in $(U, V]$, and by $I$ the set of primes in the union of the $(Y_k, X_{k-1}]$, $l_1<k\leqslant n_1$. Step 3. We let $S_3$ denote the sum of the remaining terms of $S(x)$ which correspond to numbers $\nu$ that have no prime divisors in $I$. Repeating the arguments in Step 3 of Theorem 1 almost verbatim, we arrive at the bound
$$
\begin{equation*}
|S_3| \ll F(x) \biggl( \frac{l_1}{n_1} \biggr)^\alpha (\ln\ln x)^\beta.
\end{equation*}
\notag
$$
Step 4. We let $S_4$ denote the sum of the terms that remain in $S(x)$ and correspond to numbers $\nu$ having no prime divisors in $J$. As in Step 3, we obtain the bound
$$
\begin{equation*}
|S_4| \ll F(x) \biggl( \frac{l_2}{n_2} \biggr)^\alpha (\ln\ln x)^\beta.
\end{equation*}
\notag
$$
The sum of the terms not entering any of the above sums we denote by $S_5$. All the numbers $\nu$ corresponding to them have at least one prime divisor in $I$ and at least one in $J$. Thus, all these $\nu$ have the form $\nu=c^2 uvw$, where $1\leqslant c\leqslant H$, $\mu(uvw) \neq 0$, all the prime divisors of $u$ are in $I$, all prime divisors of $v$ are in $J$, while $w$, in contrast, has no prime divisors in the union of $I$ and $J$. We take integers $\lambda$, $\mu \geqslant 1$ and denote by $S_5(\mu, \lambda)$ the sum of the terms in $S_5$ that correspond to the numbers $\nu=c^2 u v w$ in which $u$ and $v$ consist of $\mu$ and $\lambda$ prime factors, respectively. In this case,
$$
\begin{equation*}
S_5=\sum_{\mu \geqslant 1} \sum_{\lambda \geqslant 1} S_5(\mu, \lambda).
\end{equation*}
\notag
$$
We write $\Phi(n)=e_m(a\overline{n}+bn)$. Then
$$
\begin{equation*}
\begin{aligned} \, |S_5(\mu, \lambda)| &=\biggl| \sum_{c^2uvw \leqslant x}{f(c^2uvw)\Phi(c^2uvw)}\biggr| \\ &\leqslant \sum_{c\leqslant H}{f(c^2)} \sum_{w}{f(w)} \biggl| \sum_{uv \leqslant x(c^2w)^{-1}}{f(u)f(v)\Phi(c^2uvw)}\biggr|, \end{aligned}
\end{equation*}
\notag
$$
where $w$ ranges over an increasing sequence of numbers that have no prime divisors in the union of the intervals $I$ and $J$, and $w \leqslant x (c^2 X^{\mu} U^{\lambda})^{-1}$. Let $c$ and $w$ be fixed. We compare the inner sum in $S_5(\mu, \lambda; w)$ over $u$, $v$ with the sum
$$
\begin{equation*}
S'(\mu, \lambda; w)=\frac{1}{\mu\lambda} \sum_{u_1, v_1} \sum_{p, q} {f(u_1)f(p)f(v_1)f(q) \Phi(c^2u_1pv_1qw)},
\end{equation*}
\notag
$$
where $u_1$, $v_1$ range independently over increasing sequences of numbers that are products of $\mu\,{-}\,1$ and $\lambda\,{-}\,1$ different prime factors in $I$ and $J$, respectively, while $p$ and $q$ take the values of the primes in $I$ and $J$, and the condition $u_1 v_1p q \leqslant x(c^2w)^{-1}$ holds. The numbers $u$ and $v$ corresponding to terms in $S_5(\mu, \lambda; w)$ can be represented in the form $u= u_{1}p$ and $v=v_{1}q$, where $(u_{1},p)=1$ and $(v_{1},q)=1$, in exactly $\mu$ and $\lambda$ ways. Therefore, every term in $S_5(\mu, \lambda; w)$ enters $S'(\mu, \lambda; w)$ with the coefficient 1. Further, there are terms in $S'(\mu, \lambda; w)$ for which at least one of the conditions $(u_{1},p)=1$ and $(v_{1},q)=1$ is violated. We denote by $S''(\mu, \lambda; w)$ the sum over these terms. Setting $u_{1}=u_{2}p$ and $v_1=v_{2}q$, we see that
$$
\begin{equation*}
\begin{aligned} \, &|S'' (\mu, \lambda; w)| \leqslant \frac{1}{\mu\lambda} \biggl(\sum_{p^{2}qu_{2}v_{1} \leqslant x(c^2w)^{-1}} f(pu_{2})f(p)f(v_1)f(q) \\ &+\!\sum_{pq^{2}u_{1}v_{2} \leqslant x(c^2w)^{-1}} f(u_1)f(p)f(v_{2}q)f(q)+ \! \!\sum_{p^{2}q^{2}u_{2}v_{2} \leqslant x(c^2w)^{-1}} f(u_2p)f(p)f(v_{2}q)f(q) \biggr). \end{aligned}
\end{equation*}
\notag
$$
Estimating $S''(\mu, \lambda; w)$ as was done in Theorem 1, we obtain the bound
$$
\begin{equation*}
|S''(\mu, \lambda; w)| \ll \frac{1}{\mu\lambda} \frac{F(x)}{c^2w} \frac{(\ln x)^2}{H}.
\end{equation*}
\notag
$$
Thus, $|S_5(\mu, \lambda; w)|\leqslant |S'|+|S''|$, where
$$
\begin{equation*}
S'(\mu, \lambda; w)=\frac{1}{\mu\lambda} \sum_{u_1} \sum_{v_1}f(u_1)f(v_1) \widetilde{S},
\end{equation*}
\notag
$$
and for fixed $\mu, \lambda, w, u_1, v_1$ we have
$$
\begin{equation*}
\widetilde{S}=\sum_{pq \leqslant Z} f(p)f(q)\Phi(c^2 u_1 v_1 w pq), \qquad Z=\biggl[ \frac{x}{c^2 u_1 v_1 w} \biggr].
\end{equation*}
\notag
$$
We represent $\widetilde{S}$ in the form
$$
\begin{equation*}
\widetilde{S}=\sum_{pq\leqslant Z} f(p)f(q)e_m(a_1\overline{p}\, \overline{q}+b_1pq),
\end{equation*}
\notag
$$
where $a_1 \equiv a(\overline{c^2 u_1 v_1}) \pmod{m}$, $b_1 \equiv bc^2 u_1 v_1 w \pmod{m}$. Further, we divide the ranges of $p$ and $q$ into intervals of the form $P\,{<}\,p \,{\leqslant}\, P_1 \,{\leqslant}\, 2P$ and $Q\,{<}\, q \,{\leqslant}\, Q_1\,{\leqslant}\,2Q$ and choose $P$, $P_1$, $Q$, $Q_1$ in such a way that every interval $(P, P_1]$ is contained entirely in some interval $(Y_k, X_{k-1}]$, $l_1<k\leqslant n_1$, and every interval $(Q, Q_1]$ is contained entirely in some interval $(m^{1/(2s)}, m^{1/(2s-2)}]$, $ l_2<s \leqslant n_2$. Thus, $\widetilde{S}$ splits into at most $(\ln m)^2$ sums of the form
$$
\begin{equation*}
S(P, Q)=\sum_{P <p\leqslant P_1} \sum_{\substack{Q< q\leqslant Q_1\\ pq \leqslant Z}} f(p)f(q)e_m(a_1 \overline{p}\, \overline{q}+b_1pq).
\end{equation*}
\notag
$$
We consider one of these sums. Getting rid of the condition $pq \leqslant Z$, as was done in Theorem 1, we see that
$$
\begin{equation*}
S(P, Q)=\sum_{|d|<m/2}\frac{T(d)}{|d|+1}, \qquad T(d)=\sum_{P<p\leqslant P_2}\sum_{Q<q \leqslant Q_1}\alpha(p) \beta(q) e_m(a_1\overline{p}\, \overline{q}+b_1pq),
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\alpha(p)=\frac{|d|+1}{m} \biggl(\sum_{Q<\xi \leqslant Q_2} e_m(d\xi) \biggr)f(p), \qquad \beta(q)= e_m(dq)f(q),
\end{equation*}
\notag
$$
and $|\alpha(p)| \leqslant |f(p)|$ and $|\beta(q)| \leqslant |f(q)|$. By the corollary to Lemma 7, $T(d)$ satisfies the bound $|T(d)| \ll PQ \Delta_1$, where
$$
\begin{equation*}
\Delta_1=k^{1/(2s)} s^{1/(2k)}Q^{1/(2ks)} \biggl(\frac{P^{k-1}}{\sqrt{m}} +\frac{\sqrt{m}}{P^{k}}\biggr)^{1/(2ks)} \biggl(\frac{Q^{s-1}}{\sqrt{m}} +\frac{\sqrt{m}}{Q^s}\biggr)^{1/(2ks)}.
\end{equation*}
\notag
$$
It follows from the conditions on $P$ and $Q$ that
$$
\begin{equation*}
\frac{\sqrt{m}}{P^k} \leqslant \frac{\sqrt{m}}{m^{(1+\delta)/2}}=m^{-\delta/2}, \qquad \frac{P^{k-1}}{\sqrt{m}}\leqslant \frac{m^{(1-\delta)/2}}{\sqrt{m}} \leqslant m^{-\delta/2}, \qquad \frac{\sqrt{m}}{Q^s}+\frac{Q^{s-1}}{\sqrt{m}} \leqslant 2.
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation*}
\begin{aligned} \, \Delta_1 &\ll k^{1/(2s)} s^{1/(2k)} (m^{1/(2l_2)} m^{-\delta/2})^{1/(2ks)} \\ &\ll n_2^{1/(2l_1)} n_1^{1/(2l_2)} (m^{1/(10n_1)-1/(8n_1)})^{1/(2ks)} \\ &\ll n_2^{1/(2l_1)} \biggl(\frac{1}{5} l_2\biggr)^{1/(2l_2)} m^{-1/({80n_1ks})} \ll (\ln m)^{1/4} m^{-1/(80n_1^2 n_2)}= \Delta_2 (\ln m)^{1/4}. \end{aligned}
\end{equation*}
\notag
$$
Thus, $T(d) \ll PQ\Delta_2 (\ln m)^{1/4}$, and hence
$$
\begin{equation*}
S(P,Q) \ll PQ \Delta_2(\ln m)^{5/4} \ll Z\Delta_2 \ln m, \qquad \widetilde{S} \ll Z\Delta_2 (\ln m)^{13/4}.
\end{equation*}
\notag
$$
We pass to a bound for $S_5$. We obtain
$$
\begin{equation*}
\begin{aligned} \, S_5(\mu, \lambda;w) &\ll \frac{1}{\mu\lambda} \sum_{u_1}\sum_{v_1} f(u_1)f(v_1) \frac{x \Delta_2 (\ln m)^3}{c^2u_1v_1w}+\frac{1}{\mu\lambda}\, \frac{F(x)}{c^2w}\,\frac{(\ln x)^2}{H} \\ &=\frac{x\Delta_2}{\mu\lambda}\, \frac{(\ln m)^3}{c^2 w}\sum_{u_1} \frac{f(u_1)}{u_1} \sum_{v_1} \frac{f(v_1)}{v_1}+\frac{1}{\mu\lambda}\, \frac{F(x)}{c^2w}\,\frac{(\ln x)^2}{H}. \end{aligned}
\end{equation*}
\notag
$$
Further,
$$
\begin{equation*}
S_5(\mu, \lambda) \ll \frac{x \Delta_2 (\ln m)^3}{\mu \lambda} \sum_{c\leqslant H}{\frac{f(c^2)}{c^2}} \sum_{w}{\frac{f(w)}{w}} \sum_{u_1}{\frac{f(u_1)}{u_1}} \sum_{v_1}{\frac{f(v_1)}{v_1}}+\frac{1}{\mu\lambda}\, \frac{F(x)(\ln x)^3}{H}.
\end{equation*}
\notag
$$
Using arguments similar to those in Theorem 1, we see that
$$
\begin{equation*}
S_5 \ll x \Delta_2(\ln m)^{13/4} (\ln x)^\alpha+\frac{F(x)}{\sqrt{H}}.
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation*}
\begin{aligned} \, S(x) &\ll F(x) \biggl( \frac{l_1}{n_1}\biggr)^\alpha (\ln\ln x)^\beta+F(x) \biggl( \frac{l_2}{n_2}\biggr)^\alpha(\ln\ln x)^\beta \\ &\qquad+\frac{F(x)}{\sqrt{H}}+F(x) (\ln m)^{17/4} m^{-{1}/{(80n_1^2 n_2)}} \\ &\ll F(x) \biggl( \biggl( \frac{l_1}{n_1}\biggr)^\alpha (\ln\ln x)^\beta+\biggl( \frac{l_2}{n_2}\biggr)^\alpha(\ln\ln x)^\beta+(\ln m)^{17/4} m^{-{1}/{(80n_1^2 n_2)}}\biggr). \end{aligned}
\end{equation*}
\notag
$$
We now choose $n_1$ and $n_2$ in such a way that
$$
\begin{equation*}
m^{1/({80 n_1^2 n_2})} \geqslant (\ln m)^{C},
\end{equation*}
\notag
$$
where $C\geqslant \alpha+ 5$ is a constant. This condition is satisfied if $n_2$ satisfies
$$
\begin{equation*}
\frac{1}{ 80 n_1^2 n_2} \ln m \geqslant C \ln\ln m, \quad \text{that is,} \quad n_2 \leqslant \frac{1}{80 C} \frac{\ln m}{ n_1^2 \ln\ln m}.
\end{equation*}
\notag
$$
We write
$$
\begin{equation*}
n_2=\biggl[ \frac{1}{80C}\, \frac{\ln m}{n_1^2 \ln\ln m}\biggr].
\end{equation*}
\notag
$$
Noting that
$$
\begin{equation*}
n_2 \geqslant \frac{\ln m}{80C n_1^2 \ln\ln m}-1 \geqslant \frac{\ln m}{102C n_1^2 \ln\ln m},\quad \text{that is,}\quad \frac{1}{n_2} \leqslant \frac{102C n_1^2 \ln\ln m}{\ln m}
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
\frac{1}{2}\,\frac{\ln m}{\ln x} \ln\ln x \leqslant l_1 \leqslant \frac{1}{2}\, \frac{\ln m}{\ln x} \ln\ln x+1<\frac{3}{4}\, \frac{\ln m}{\ln x} \ln\ln m,
\end{equation*}
\notag
$$
we see that
$$
\begin{equation*}
\biggl( \frac{l_1}{n_1}\biggr)^\alpha+\biggl( \frac{l_2}{n_2}\biggr)^ \alpha \ll \biggl( \frac{3}{4}\, \frac{\ln m}{n_1 \ln x} \ln\ln m \biggr)^\alpha+\biggl( 102C \frac{l_2 n_1^2 }{\ln m} \ln\ln m \biggr)^\alpha.
\end{equation*}
\notag
$$
We define $n_2$ and $l_2$ as follows:
$$
\begin{equation*}
n_1=\biggl[ \frac{1}{\sqrt[4]{680C}}\, \frac{\sqrt{\ln m}}{(\ln x)^{1/4}}\biggr], \qquad l_2=5n_1.
\end{equation*}
\notag
$$
Then
$$
\begin{equation*}
\biggl( \frac{l_1}{n_1}\biggr)^\alpha+\biggl( \frac{l_2}{n_2}\biggr)^\alpha \ll \biggl( \frac{\sqrt{\ln m}}{(\ln x)^{3/4}}\ln\ln m \biggr)^\alpha.
\end{equation*}
\notag
$$
Since the inequalities $l_2 \geqslant 5n_1$, $n_2 \leqslant (1/4)\sqrt{\ln m}$ and $n_2\leqslant (1/60) \sqrt{\ln m}$ are obvious, it follows that we only need to show that $3l_1\leqslant n_1$ and $3l_2 \leqslant n_2$. In turn, to satisfy the first inequality, it suffices to prove that
$$
\begin{equation*}
2\frac{\ln m}{\ln x} \ln \ln m<\frac{1}{6\sqrt[4]{C}}\, \frac{\sqrt{\ln m}}{(\ln x)^{1/4}}
\end{equation*}
\notag
$$
or, equivalently,
$$
\begin{equation*}
(\ln x)^{3/4}>12 \sqrt[4]{C}\, (\ln m)^{1/2} \ln\ln m.
\end{equation*}
\notag
$$
However, the last inequality follows from the hypothesis of the theorem. The validity of the other inequality follows from the bound
$$
\begin{equation*}
15 n_1 \leqslant \frac{\ln m}{102C n_1^2 \ln\ln m}, \quad \text{that is,} \quad \frac{5}{9\sqrt[4]{C^3}}\, \frac{(\ln m)^{3/2}}{(\ln x)^{3/4}} \leqslant \frac{1}{102 C}\, \frac{\ln m}{\ln\ln m},
\end{equation*}
\notag
$$
or, equivalently,
$$
\begin{equation*}
(\ln x)^{3/4} \geqslant \frac{170}{3} \sqrt[4]{C}\, (\ln m)^{1/2} \ln\ln m.
\end{equation*}
\notag
$$
However, the last relation follows from the hypothesis of the theorem. Thus,
$$
\begin{equation*}
S(x) \ll F(x) \Delta, \qquad \Delta=\biggl( \frac{\sqrt{\ln m}}{(\ln x)^{3/4}} \ln\ln m\biggr)^\alpha (\ln\ln m)^\beta.
\end{equation*}
\notag
$$
This completes the proof of Theorem 2. Remark 5. The following bound holds in the case of a fixed $\varepsilon$, $0<\varepsilon \leqslant 1/2$, and $x=m^\varepsilon$:
$$
\begin{equation*}
S(x) \ll F(x) \Delta, \qquad \Delta=\frac{(\ln\ln m)^{\alpha+ \beta}}{(\ln m)^{\alpha/4}}.
\end{equation*}
\notag
$$
The author is deeply grateful to M. A. Korolev for suggesting the problem and for his continuing interest in the work.
|
|
|
Bibliography
|
|
|
1. |
H. D. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49:3-4 (1927), 407–464 |
2. |
A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. U.S.A., 34:5 (1948), 204–207 |
3. |
T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 |
4. |
A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus”, Dokl. RAN, 333:2 (1993), 138–139 ; English transl. Russian Acad. Sci. Dokl. Math., 48:3 (1994), 452–454 |
5. |
A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. RAN. Ser. Mat., 59:4 (1995), 61–80 ; English transl. Izv. Math., 59:4 (1995), 721–740 |
6. |
A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. RAN. Ser. Mat., 59:5 (1995), 93–102 ; English transl. Izv. Math., 59:5 (1995), 971–981 |
7. |
J. Bourgain and M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. RAN. Ser. Mat., 78:4 (2014), 19–72 ; English transl. Izv. Math., 78:4 (2014), 656–707 |
8. |
M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. RAN. Ser. Mat., 64:6 (2000), 41–64 ; English transl. Izv. Math., 64:6 (2000), 1129–1152 |
9. |
M. A. Korolev, “Short Kloosterman sums with weights”, Mat. Zametki, 88:3 (2010), 415–427 ; English transl. Math. Notes, 88:3 (2010), 374–385 |
10. |
M. A. Korolev, “Generalized Kloosterman sum with primes”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary
of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK “Nauka/Interperiodica”, Moscow, 2017, 163–180 ; English transl. Proc. Steklov Inst. Math., 296 (2017), 154–171 |
11. |
M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Mat.Sb., 209:5 (2018), 54–61 ; English transl. Sb. Math., 209:5 (2018), 652–659 |
12. |
M. A. Korolev, “Methods for estimating short Kloosterman sums”, Chebyshevskii Sb., 17:4 (2016), 79–109 (Russian) |
13. |
A. A. Karatsuba, “Kloosterman double sums”, Mat. Zametki, 66:5 (1999), 682–687 ; English transl. Math. Notes, 66:5 (1999), 565–569 |
14. |
G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Stud. Adv. Math., 46, Cambridge Univ. Press, Cambridge, 1995 |
15. |
M. Korolev and I. Shparlinski, “Sums of algebraic trace functions twisted by arithmetic functions”, Pacific J. Math., 304:2 (2020), 505–522 |
16. |
H. Halberstam and H.-E. Richert, “On a result of R. R. Hall”, J. Number Theory, 11:1 (1979), 76–89 |
Citation:
N. K. Semenova, “New estimates for short Kloosterman sums with weights”, Izv. Math., 86:3 (2022), 560–585
Linking options:
https://www.mathnet.ru/eng/im9168https://doi.org/10.1070/IM9168 https://www.mathnet.ru/eng/im/v86/i3/p161
|
|