Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2022, Volume 86, Issue 2, Pages 243–251
DOI: https://doi.org/10.1070/IM9139
(Mi im9139)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the number of epi-, mono- and homomorphisms of groups

E. K. Brusyanskayaab, A. A. Klyachkoab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: It is well known that the number of homomorphisms from a group $F$ to a group $G$ is divisible by the greatest common divisor of the order of $G$ and the exponent of $F/[F,F]$. We study the question of what can be said about the number of homomorphisms satisfying certain natural conditions like injectivity or surjectivity. A simple non-trivial consequence of our results is the fact that in any finite group the number of generating pairs $(x,y)$ such that $x^3=1=y^5$ is divisible by the greatest common divisor of fifteen and the order of the group $[G,G]\cdot\{g^{15}\mid g\in G\}$.
Keywords: number of homomorphisms, equations in groups, Frobenius' theorem, Solomon's theorem.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00591
This research was supported by the Russian Foundation for Basic Research (grant no. 19-01-00591).
Received: 03.01.2021
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2022, Volume 86, Issue 2, Pages 25–33
DOI: https://doi.org/10.4213/im9139
Bibliographic databases:
Document Type: Article
UDC: 512.542+512.543.72
MSC: 20F70, 20D60, 20F05
Language: English
Original paper language: Russian
Citation: E. K. Brusyanskaya, A. A. Klyachko, “On the number of epi-, mono- and homomorphisms of groups”, Izv. RAN. Ser. Mat., 86:2 (2022), 25–33; Izv. Math., 86:2 (2022), 243–251
Citation in format AMSBIB
\Bibitem{BruKly22}
\by E.~K.~Brusyanskaya, A.~A.~Klyachko
\paper On the number of epi-, mono- and homomorphisms of groups
\jour Izv. RAN. Ser. Mat.
\yr 2022
\vol 86
\issue 2
\pages 25--33
\mathnet{http://mi.mathnet.ru/im9139}
\crossref{https://doi.org/10.4213/im9139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461233}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022IzMat..86..243B}
\transl
\jour Izv. Math.
\yr 2022
\vol 86
\issue 2
\pages 243--251
\crossref{https://doi.org/10.1070/IM9139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000797188300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130993723}
Linking options:
  • https://www.mathnet.ru/eng/im9139
  • https://doi.org/10.1070/IM9139
  • https://www.mathnet.ru/eng/im/v86/i2/p25
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:489
    Russian version PDF:57
    English version PDF:26
    Russian version HTML:176
    References:49
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024