Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2022, Volume 86, Issue 1, Pages 32–91
DOI: https://doi.org/10.1070/IM9138
(Mi im9138)
 

This article is cited in 5 scientific papers (total in 5 papers)

Plancherel–Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations

A. I. Aptekareva, S. Yu. Dobrokhotovb, D. N. Tulyakova, A. V. Tsvetkovab

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
References:
Abstract: We study the asymptotic properties of multiple orthogonal Hermite polynomials which are determined by the orthogonality relations with respect to two Hermite weights (Gaussian distributions) with shifted maxima. The starting point of our asymptotic analysis is a four-term recurrence relation connecting the polynomials with adjacent numbers. We obtain asymptotic expansions as the number of the polynomial and its variable grow consistently (the so-called Plancherel–Rotach type asymptotic formulae). Two techniques are used. The first is based on constructing expansions of bases of homogeneous difference equations, and the second on reducing difference equations to pseudodifferential ones and using the theory of the Maslov canonical operator. The results of these approaches agree.
Keywords: asymptotic formulae, special functions, recurrence relations, pseudodifferential operators, Maslov canonical operator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1623
АААА-А20-120011690131-7
Russian Science Foundation 19-71-30004
A. I. Aptekarev's work (part 1 of the paper) was supported by MCFAM, contract no. 075-15-2019-1623 with the Ministry of Science and Higher Education of the Russian Federation. D. N. Tulyakov's work (part 2 of the paper) was supported by the Russian Foundation for Basic Research, grant no. 19-71-30004. The work of S. Yu. Dobrokhotov and A. V. Tsvetkova (part 3 of the paper) was supported by the government budget under State Contract AAAA-A20-120011690131-7.
Received: 30.12.2020
Revised: 10.06.2021
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: English
Original paper language: Russian
Citation: A. I. Aptekarev, S. Yu. Dobrokhotov, D. N. Tulyakov, A. V. Tsvetkova, “Plancherel–Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations”, Izv. Math., 86:1 (2022), 32–91
Citation in format AMSBIB
\Bibitem{AptDobTul22}
\by A.~I.~Aptekarev, S.~Yu.~Dobrokhotov, D.~N.~Tulyakov, A.~V.~Tsvetkova
\paper Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and
recurrence relations
\jour Izv. Math.
\yr 2022
\vol 86
\issue 1
\pages 32--91
\mathnet{http://mi.mathnet.ru//eng/im9138}
\crossref{https://doi.org/10.1070/IM9138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461226}
\zmath{https://zbmath.org/?q=an:1510.33008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022IzMat..86...32A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772176500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128185394}
Linking options:
  • https://www.mathnet.ru/eng/im9138
  • https://doi.org/10.1070/IM9138
  • https://www.mathnet.ru/eng/im/v86/i1/p36
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:493
    Russian version PDF:86
    English version PDF:47
    Russian version HTML:246
    References:59
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024