Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2022, Volume 86, Issue 1, Pages 1–31
DOI: https://doi.org/10.1070/IM9085
(Mi im9085)
 

This article is cited in 6 scientific papers (total in 6 papers)

Embedding theorems related to torsional rigidity and principal frequency

F. G. Avkhadiev

Kazan (Volga Region) Federal University
References:
Abstract: We study criteria for the finiteness of the constants $C$ in integral inequalities generalizing the Poincaré–Friedrichs inequality and Saint-Venant's variational definition of torsional rigidity. The Rayleigh–Faber–Krahn isoperimetric inequality and the Saint-Venant–Pólya inequality guarantee the existence of finite constants $C$ for domains of finite volume. Criteria for the existence of finite constants $C$ for unbounded domains of infinite volume were known only in the cases of planar simply connected and spatial convex domains. We generalize and strengthen some known results and extend them to the case when $1<p<2$. Here is one of our results.
Suppose that $1\leqslant p <2$ and $\Omega=\Omega^0\setminus K$, where $K\subset \Omega^0$ is a compact set and $\Omega^0$ is either a planar domain with uniformly perfect boundary or a spatial domain satisfying the exterior sphere condition. Under these assumptions, a finite constant $\Lambda_{p-1}(\Omega)$ exists if and only if the integral $\int_\Omega\rho^{{2p}/{(2-p)}}(x,\Omega)\, dx$ is finite, where $\rho(x,\Omega)$ is the distance from the point $x$ to the boundary of $\Omega$.
Keywords: distance function, Hardy's inequality, torsional rigidity, principal frequency.
Funding agency Grant number
Russian Science Foundation 18-11-00115
This work was supported by the Russian Science Foundation under grant no. 18-11-00115.
Received: 16.07.2020
Revised: 15.11.2020
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2022, Volume 86, Issue 1, Pages 3–35
DOI: https://doi.org/10.4213/im9085
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.956.2+514.13
MSC: 26D10, 46E35
Language: English
Original paper language: Russian
Citation: F. G. Avkhadiev, “Embedding theorems related to torsional rigidity and principal frequency”, Izv. Math., 86:1 (2022), 1–31
Citation in format AMSBIB
\Bibitem{Avk22}
\by F.~G.~Avkhadiev
\paper Embedding theorems related to torsional rigidity and principal frequency
\jour Izv. Math.
\yr 2022
\vol 86
\issue 1
\pages 1--31
\mathnet{http://mi.mathnet.ru//eng/im9085}
\crossref{https://doi.org/10.1070/IM9085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461225}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022IzMat..86....1A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772178900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128206002}
Linking options:
  • https://www.mathnet.ru/eng/im9085
  • https://doi.org/10.1070/IM9085
  • https://www.mathnet.ru/eng/im/v86/i1/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:492
    Russian version PDF:58
    English version PDF:29
    Russian version HTML:193
    References:70
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024