Abstract:
We study criteria for the finiteness of the constants C
in integral inequalities generalizing the
Poincaré–Friedrichs inequality and Saint-Venant's variational definition of torsional rigidity.
The Rayleigh–Faber–Krahn isoperimetric inequality
and the Saint-Venant–Pólya inequality guarantee the existence of finite constants C for
domains of finite volume. Criteria for the existence of finite constants C for unbounded domains
of infinite volume were known only in the cases of planar simply connected and spatial convex
domains. We generalize and strengthen some known results and extend them to the case
when 1<p<2. Here is one of our results.
Suppose that 1⩽p<2 and Ω=Ω0∖K, where K⊂Ω0
is a compact set and Ω0 is either a planar domain with uniformly perfect boundary or
a spatial domain satisfying the exterior sphere condition. Under these assumptions,
a finite constant Λp−1(Ω) exists if and only if the integral
∫Ωρ2p/(2−p)(x,Ω)dx is finite, where ρ(x,Ω)
is the distance from the point x to the boundary of Ω.
Keywords:
distance function, Hardy's inequality, torsional rigidity, principal frequency.
\Bibitem{Avk22}
\by F.~G.~Avkhadiev
\paper Embedding theorems related to torsional rigidity and principal frequency
\jour Izv. Math.
\yr 2022
\vol 86
\issue 1
\pages 1--31
\mathnet{http://mi.mathnet.ru/eng/im9085}
\crossref{https://doi.org/10.1070/IM9085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461225}
\zmath{https://zbmath.org/?q=an:1496.46028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022IzMat..86....1A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772178900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128206002}
Linking options:
https://www.mathnet.ru/eng/im9085
https://doi.org/10.1070/IM9085
https://www.mathnet.ru/eng/im/v86/i1/p3
This publication is cited in the following 7 articles:
F. G. Avkhadiev, “Analog metriki Puankare i izoperimetricheskie konstanty”, Izv. vuzov. Matem., 2024, no. 9, 92–99
F. G. Avkhadiev, “An Analog of the Poincaré Metric and Isoperimetric Constants”, Russ Math., 68:9 (2024), 79
F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271
F. G. Avkhadiev, A. R. Kacimov, “The Saint-Venant type isoperimetric inequalities for assessing saturated water storage in lacunary shallow perched aquifers”, Z. Angew. Math. Mech., 103:1 (2023), e202100069
F. G. Avkhadiev, A. R. Kasimov, “Integralnye otsenki reshenii kraevykh zadach dlya uravneniya Puassona”, Izv. vuzov. Matem., 2023, no. 10, 70–76
F. G. Avkhadiev, A. R. Kacimov, “Integral Estimates of Solutions to Boundary Values Problems for the Poisson Equation”, Russ Math., 67:10 (2023), 63
R. G. Nasibullin, “The geometry of one-dimensional and spatial Hardy type inequalities”, Russian Math. (Iz. VUZ), 66:11 (2022), 46–78