Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 3, Pages 407–420
DOI: https://doi.org/10.1070/IM9081
(Mi im9081)
 

Plane algebraic curves in fancy balls

N. G. Kruzhilin, S. Yu. Orevkov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Boileau and Rudolph [1] called an oriented link $L$ in the 3-sphere a \textit{$\mathbb{C}$-boundary} if it can be realized as the intersection of an algebraic curve $A$ in $\mathbb{C}^2$ and the boundary of a smooth embedded closed 4-ball $B$. They showed that some links are not $\mathbb{C}$-boundaries. We say that $L$ is a \textit{strong $\mathbb{C}$-boundary} if $A\setminus B$ is connected. In particular, all quasipositive links are strong $\mathbb{C}$-boundaries.
In this paper we give examples of non-quasipositive strong $\mathbb{C}$-boundaries and non-strong $\mathbb{C}$-boundaries. We give a complete classification of (strong) $\mathbb{C}$-boundaries with at most five crossings.
Keywords: quasipositive link, $\mathbb C$-boundary, Thom conjecture.
Funding agency Grant number
Russian Science Foundation 19-11-00316
This work was supported by the Russian Science Foundation (project no. 19-11-00316).
Received: 29.06.2020
Bibliographic databases:
Document Type: Article
UDC: 515.162.8
Language: English
Original paper language: Russian
Citation: N. G. Kruzhilin, S. Yu. Orevkov, “Plane algebraic curves in fancy balls”, Izv. Math., 85:3 (2021), 407–420
Citation in format AMSBIB
\Bibitem{KruOre21}
\by N.~G.~Kruzhilin, S.~Yu.~Orevkov
\paper Plane algebraic curves in fancy balls
\jour Izv. Math.
\yr 2021
\vol 85
\issue 3
\pages 407--420
\mathnet{http://mi.mathnet.ru//eng/im9081}
\crossref{https://doi.org/10.1070/IM9081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4265368}
\zmath{https://zbmath.org/?q=an:1471.32051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..407K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671434400001}
\elib{https://elibrary.ru/item.asp?id=46911425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110751282}
Linking options:
  • https://www.mathnet.ru/eng/im9081
  • https://doi.org/10.1070/IM9081
  • https://www.mathnet.ru/eng/im/v85/i3/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:390
    Russian version PDF:71
    English version PDF:32
    Russian version HTML:152
    References:35
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024