Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 4, Pages 666–680
DOI: https://doi.org/10.1070/IM9072
(Mi im9072)
 

This article is cited in 4 scientific papers (total in 4 papers)

Symmetries of a two-dimensional continued fraction

O. N. Germanab, I. A. Tlyustangelovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We describe the symmetry group of a multidimensional continued fraction. As a multidimensional generalization of continued fractions we consider Klein polyhedra. We distinguish two types of symmetries: Dirichlet symmetries, which correspond to the multiplication by units of the respective extension of $\mathbb{Q}$, and so-called palindromic symmetries. The main result is a criterion for a two-dimensional continued fraction to have palindromic symmetries, which is analogous to the well-known criterion for the continued fraction of a quadratic irrationality to have a symmetric period.
Keywords: multidimensional continued fractions, Klein polyhedra, Dirichlet's unit theorem.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00886
Foundation for the Development of Theoretical Physics and Mathematics BASIS
This research was supported by RFBR (grant no. 18-01-00886) and by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”.
Received: 17.06.2020
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2021, Volume 85, Issue 4, Pages 53–68
DOI: https://doi.org/10.4213/im9072
Bibliographic databases:
Document Type: Article
UDC: 511.48
MSC: 11J70, 11H46
Language: English
Original paper language: Russian
Citation: O. N. German, I. A. Tlyustangelov, “Symmetries of a two-dimensional continued fraction”, Izv. RAN. Ser. Mat., 85:4 (2021), 53–68; Izv. Math., 85:4 (2021), 666–680
Citation in format AMSBIB
\Bibitem{GerTly21}
\by O.~N.~German, I.~A.~Tlyustangelov
\paper Symmetries of a two-dimensional continued fraction
\jour Izv. RAN. Ser. Mat.
\yr 2021
\vol 85
\issue 4
\pages 53--68
\mathnet{http://mi.mathnet.ru/im9072}
\crossref{https://doi.org/10.4213/im9072}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..666G}
\elib{https://elibrary.ru/item.asp?id=47082084}
\transl
\jour Izv. Math.
\yr 2021
\vol 85
\issue 4
\pages 666--680
\crossref{https://doi.org/10.1070/IM9072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000685549400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116058309}
Linking options:
  • https://www.mathnet.ru/eng/im9072
  • https://doi.org/10.1070/IM9072
  • https://www.mathnet.ru/eng/im/v85/i4/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:524
    Russian version PDF:141
    English version PDF:37
    Russian version HTML:208
    References:37
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024